...
首页> 外文期刊>Frontiers in Human Neuroscience >Predicting in vivo MRI Gradient-Field Induced Voltage Levels on Implanted Deep Brain Stimulation Systems Using Neural Networks
【24h】

Predicting in vivo MRI Gradient-Field Induced Voltage Levels on Implanted Deep Brain Stimulation Systems Using Neural Networks

机译:预测使用神经网络的植入深脑刺激系统的植入深脑刺激系统中的<斜视>中的 MRI梯度场感应电压水平

获取原文
           

摘要

Introduction MRI gradient-fields may induce extrinsic voltage between electrodes and conductive neurostimulator enclosure of implanted deep brain stimulation (DBS) systems, and may cause unintended stimulation and/or malfunction. Electromagnetic (EM) simulations using detailed anatomical human models, therapy implant trajectories, and gradient coil models can be used to calculate clinically relevant induced voltage levels. Incorporating additional anatomical human models into the EM simulation library can help to achieve more clinically relevant and accurate induced voltage levels, however, adding new anatomical human models and developing implant trajectories is time-consuming, expensive and not always feasible. Methods MRI gradient-field induced voltage levels are simulated in six adult human anatomical models, along clinically relevant DBS implant trajectories to generate the dataset. Predictive artificial neural network (ANN) regression models are trained on the simulated dataset. Leave-one-out cross validation is performed to assess the performance of ANN regressors and quantify model prediction errors. Results More than 180,000 unique gradient-induced voltage levels are simulated. ANN algorithm with two fully connected layers is selected due to its superior generalizability compared to support vector machine and tree-based algorithms in this particular application. The ANN regression model is capable of producing thousands of gradient-induced voltage predictions in less than a second with mean-squared-error less than 200 mV. Conclusion We have integrated machine learning (ML) with computational modeling and simulations and developed an accurate predictive model to determine MRI gradient-field induced voltage levels on implanted DBS systems.
机译:引言MRI梯度场可以诱导植入深脑刺激(DBS)系统的电极和导电神经刺激器外壳之间的外在电压,并且可能导致意外刺激和/或故障。使用详细解剖人型的电磁(EM)模拟,治疗植入轨迹和梯度线圈型号可用于计算临床相关的感应电压水平。将额外的解剖人类模型加入到EM仿真库中,可以帮助实现更临床相关和准确的电压水平,然而,添加新的解剖人型和开发植入物轨迹是耗时,昂贵的,并且并不总是可行的。方法MRI梯度场感应电压水平在六个成人人解剖模型中模拟,沿着临床相关的DBS植入轨迹来产生数据集。预测人工神经网络(ANN)回归模型在模拟数据集上培训。执行休留次交叉验证以评估ANN回归流器的性能和量化模型预测误差。结果模拟了180,000个独特的梯度感应电压水平。与在该特定应用中的支持向量机和基于树的算法相比,相比,选择具有两个完全连接层的ANN算法。 ANN回归模型能够产生数千个梯度感应的电压预测,其具有小于200mV的平均平均误差。结论我们具有集成的机器学习(ML),具有计算建模和仿真,并开发了一种准确的预测模型,以确定植入的DBS系统上的MRI梯度场感应电压电平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号