首页> 外文期刊>Frontiers in Human Neuroscience >Editorial on emerging neuroimaging tools for studying normal and abnormal human brain development
【24h】

Editorial on emerging neuroimaging tools for studying normal and abnormal human brain development

机译:学习正常和异常人脑发展的新兴神经影像学工具的社论

获取原文
           

摘要

Research on human brain development has seen an upturn in the past few years due to increasing use of noninvasive neuroimaging tools for studying the anatomy and function of the developing brain. Here we gathered innovative studies of human brain function and development using magnetic resonance imaging (MRI), near infrared spectroscopy (NIRS) and magnetoencephalography (MEG) with experimental paradigms suitable for pediatric research. These modalities are without significant risk to the developing brain, generally require minimal patient preparation, and are well tolerated by children when performed by experienced teams. A review of recent studies of human brain development using these advanced neuroimaging tools is quite timely, since we are witnessing advances not only in the instrumentation optimized for the pediatric population, but also in research focused on the human fetuses in utero, neonates, and older children. MRI methods such volumetric T1 imaging and Diffusion Tensor Imaging (DTI) are being used more frequently in children to determine the gross anatomy and structural connectivity of the developing brain. Functional MRI and NIRS are being used to assess the hemodynamics of neurovascular responses and functional localization in development (Govindan et al., 2014 ; Horowitz-Kraus et al., 2014 ). MEG complements electroencephalography (EEG) as the only other technique capable of directly measuring the developing brain neural activity in an entirely passive manner with MEG being superior to EEG in its ability to localize activity during development. MEG and EEG can be used to assess electrophysiological functions of the developing human brain (Edgar et al., 2014 ). Findings from multiple neuroimaging methods can be combined to answer specific scientific questions regarding pediatric pathology (Brown et al., 2014 ; Hunold et al., 2014 ; Papadelis et al., 2014 ) or typical human brain development. Although MEG is still being used relatively rarely in pediatric studies, recent developments in this technology (Roberts et al., 2014 ) are beginning to demonstrate its utility in both the basic and clinical neuroscience of brain development (Edgar et al., 2014 ; Rezaie et al., 2014 ; Sowman et al., 2014 ; Taylor et al., 2014 ). Biomagnetic techniques also offer a direct noninvasive way to assess the functional brain and heart activity of human fetuses in utero. Unlike electric fields, magnetic fields produced by the electrical activity in the heart and brain of the fetus are not attenuated by the vernix, a waxy film covering its entire skin. Biomagnetic instruments specifically designed for fetal studies have been developed for this purpose. Fetal MEG studies using such a system have shown that both spontaneous brain activity and evoked cortical activity can be measured from outside the abdomen of pregnant mothers (Muenssinger et al., 2013 ). Fetal MEG and Magnetocardiography (MCG) may become clinically very useful for implementation and evaluation of intervention programs in at-risk populations. Biomagnetic instruments have also been developed for specifically measuring the brain activity in newborns, infants, and older children (Roberts et al., 2014 ). MEG studies have shown the usefulness of MEG for localizing active regions in the brain and also for tracking the longitudinal maturation of various sensory systems. Studies of pediatric patients are beginning to show interesting functional pathology in autism spectrum disorder (Doesburg et al., 2013 ; Edgar et al., 2014 ), cerebral palsy (Papadelis et al., 2014 ), epilepsy (Hunold et al., 2014 ; Khan et al., 2014 ; Tanaka and Stufflebeam, 2014 ), and other neurological and psychiatric disorders (Down syndrome, traumatic brain injury, Tourette syndrome, hearing deficits, childhood migraine) (Larson and Lee, 2014 ). The current research topic gathers studies from different research groups studying the human brain development by using advanced neuroimaging tools. Neuroimaging can offer critical information about both normal as well as abnormal human brain development. Most of the currently available tools are designed for adult use. Hardware and methods especially tailored for pediatric use remain under continual refinement. Issues relating to compliance are now mitigated by new software developments such as head motion tracking and motion correction. Such technological advancements to address specific issues germane to pediatric populations will likely promote wider adoption of neuroimaging for both clinical as well as research purposes. Conflict of interest statement The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
机译:由于使用非侵蚀性神经影像工具的使用来研究显影大脑的解剖和功能,过去几年人脑发育研究表明过去几年。在这里,我们利用磁共振成像(MRI),近红外光谱(NIRS)和磁性脑图(MEG)的磁共振成像(MRI)收集了对人脑功能和开发的创新研究,其具有适用于儿科研究的实验范式。这些模式对发展大脑的风险没有显着风险,一般需要最小的患者准备,并且由经验丰富的团队进行时,儿童耐受良好。利用这些先进的神经影像工具对人类大脑发展研究的综述是及时的及时的,因为我们目睹了对儿科人口优化的仪器的提高,而且还在研究中关注子宫,新生儿和老年人的人类胎儿孩子们。 MRI方法这种体积T1成像和扩散张量成像(DTI)在儿童中更频繁地使用,以确定显影大脑的总解剖和结构连接。功能性MRI和NIRS用于评估神经血管反应和开发功能本地化的血流动力学(Govindan等,2014; Horowitz-Kraus等,2014)。 MEG补充了脑电图(EEG)作为能够以完全被动的方式直接测量显影脑神经活动的唯一技术,以梅格优于其在发育期间的活动的能力。梅格和脑电图可用于评估发展中脑的电生理功能(Edgar等,2014)。来自多种神经影像方法的发现可以组合以回答关于儿科病理学的特定科学问题(Brown等人,2014,2014; Hunold等,2014; Papadelis等,2014)或典型的人脑发育。虽然MEG仍然在儿科研究中使用相对较少,但最近这项技术的发展(Roberts等,2014)开始展示其在脑发展的基本和临床神经科学中的效用(Edgar等,2014; Rezaie等,2014年; Sowman等,2014年; Taylor等,2014)。生物磁性技术还提供了一种直接的非侵入性方式来评估子宫中人类胎儿的功能性脑和心脏活性。与电场不同,胎儿心脏和大脑中的电活动产生的磁场不会被Vernix衰减,覆盖其整个皮肤的蜡质薄膜。为此目的开发了专门为胎儿研究设计的生物磁器。使用这种系统的胎儿MEG研究表明,可以从怀孕母亲的腹部外部测量自发性脑活动和诱发的皮质活动(Muenssinger等,2013)。胎儿MEG和磁进素造影(MCG)可能会在临床上非常有用,以实现和评估风险群体的干预计划。还开发了生物磁器,用于特异性测量新生儿,婴儿和年龄较大的儿童的大脑活动(Roberts等,2014)。 MEG研究表明了MEG用于本地化大脑中的有源区以及跟踪各种感官系统的纵向成熟的有用性。对儿科患者的研究开始在自闭症谱系障碍中表现出有趣的功能病理(博格等,2013; Edgar等,2014),脑瘫(Papadelis等,2014),癫痫(Hunold等,2014年,2014年; Khan等,2014年; Tanaka和Charplebeam,2014年)和其他神经系统和精神病疾病(唐氏综合征,创伤性脑损伤,Tourette综合征,听力赤字,童年偏头痛)(Larson和Lee,2014)。目前的研究主题通过使用先进的神经影像工具来聚集来自不同研究小组的研究,研究人类脑发展。 NeuroMaging可以提供关于正常的关键信息以及异常的人类脑发育。大多数当前可用的工具都设计用于成人使用。特别为儿科使用量身定制的硬件和方法仍然在持续的改进之下。现在,新的软件开发,如头部运动跟踪和运动校正,现在减轻了与合规有关的问题。这种技术进步与儿科人群的特定问题有可能促进临床和研究目的的神经影像动物的宽度。利益冲突声明提交人声明,在没有任何可能被解释为潜在利益冲突的商业或财务关系的情况下进行了研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号