...
首页> 外文期刊>MBio >Rapid Freezing Enables Aminoglycosides To Eradicate Bacterial Persisters via Enhancing Mechanosensitive Channel MscL-Mediated Antibiotic Uptake
【24h】

Rapid Freezing Enables Aminoglycosides To Eradicate Bacterial Persisters via Enhancing Mechanosensitive Channel MscL-Mediated Antibiotic Uptake

机译:快速冷冻使氨基糖苷能够通过增强机械敏感通道MSCL介导的抗生素摄取来消除细菌滞留物

获取原文

摘要

Bacterial persisters exhibit noninherited antibiotic tolerance and are linked to the recalcitrance of bacterial infections. It is very urgent but also challenging to develop antipersister strategies. Here, we report that 10-s freezing with liquid nitrogen dramatically enhances the bactericidal action of aminoglycoside antibiotics by 2 to 6 orders of magnitude against many Gram-negative pathogens, with weaker potentiation effects on Gram-positive bacteria. In particular, antibiotic-tolerant Escherichia coli and Pseudomonas aeruginosa persisters—which were prepared by treating exponential-phase cells with ampicillin, ofloxacin, the protonophore cyanide m -chlorophenyl hydrazone (CCCP), or bacteriostatic antibiotics—can be effectively killed. We demonstrated, as a proof of concept, that freezing potentiated the aminoglycosides' killing of P. aeruginosa persisters in a mouse acute skin wound model. Mechanistically, freezing dramatically increased the bacterial uptake of aminoglycosides regardless of the presence of CCCP, indicating that the effects are independent of the proton motive force (PMF). In line with these results, we found that the effects were linked to freezing-induced cell membrane damage and were attributable, at least partly, to the mechanosensitive ion channel MscL, which was able to directly mediate such freezing-enhanced aminoglycoside uptake. In view of these results, we propose that the freezing-induced aminoglycoside potentiation is achieved by freezing-induced cell membrane destabilization, which, in turn, activates the MscL channel, which is able to effectively take up aminoglycosides in a PMF-independent manner. Our work may pave the way for the development of antipersister strategies that utilize the same mechanism as freezing but do so without causing any injury to animal cells.
机译:细菌滞留表现出不受干扰的抗生素耐受性,并与细菌感染的顽固相关联。发展安助策略策略是非常紧迫的,但也挑战。在这里,我们认为10-S含有液氮的冷冻显着地增强了氨基糖苷类抗生素的杀菌作用2至6个仪数对许多革兰氏阴性病原体,具有较弱的革兰氏阳性细菌的增强作用。特别地,通过用氧氟哌林,氧氟沙林,质子氰化物M-氯苯苯基腙(CCCP)或抑制抗生素的蛋白氧化林蛋白,或抑菌抗生素 - 或抑菌抗生素可以通过处理抗生素耐受性的大肠杆菌和假单胞菌铜绿假单胞菌持久性 - 可以有效地杀死。作为概念证明,我们证明了冻结在小鼠急性皮肤伤口模型中的氨基糖苷杀死P.铜绿假单胞菌的杀伤。机械地,无论CCCP的存在如何,冻结显着增加了氨基糖苷的细菌摄取,表明这些效果与质子动力(PMF)无关。符合这些结果,我们发现这些效果与冷冻诱导的细胞膜损伤有关,并且至少部分地将其归因于机械敏感离子通道MSCl,其能够直接介导这种冷冻增强的氨基糖苷摄取。鉴于这些结果,我们提出通过冷冻诱导的细胞膜稳定化实现冷冻诱导的氨基糖苷能量,这反过来又激活MSCL通道,其能够以邻无关的方式有效地占用氨基糖苷。我们的工作可能会为开发利用与冻结相同机制的止汗策略来铺平道路,但是在不导致动物细胞造成任何伤害的情况下。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号