首页> 外文期刊>Materials >Numerical Simulation on Seismic Response of the Filled Joint under High Amplitude Stress Waves Using Finite-Discrete Element Method (FDEM)
【24h】

Numerical Simulation on Seismic Response of the Filled Joint under High Amplitude Stress Waves Using Finite-Discrete Element Method (FDEM)

机译:用有限分元法(FDEM)在高幅度应力波下填充接头抗震响应的数值模拟

获取原文
获取外文期刊封面目录资料

摘要

This paper numerically investigates the seismic response of the filled joint under high amplitude stress waves using the combined finite-discrete element method (FDEM). A thin layer of independent polygonal particles are used to simulate the joint fillings. Each particle is meshed using the Delaunay triangulation scheme and can be crushed when the load exceeds its strength. The propagation of the 1D longitude wave through a single filled joint is studied, considering the influences of the joint thickness and the characteristics of the incident wave, such as the amplitude and frequency. The results show that the filled particles under high amplitude stress waves mainly experience three deformation stages: (i) initial compaction stage; (ii) crushing stage; and (iii) crushing and compaction stage. In the initial compaction stage and crushing and compaction stage, compaction dominates the mechanical behavior of the joint, and the particle area distribution curve varies little. In these stages, the transmission coefficient increases with the increase of the amplitude, i.e., peak particle velocity (PPV), of the incident wave. On the other hand, in the crushing stage, particle crushing plays the dominant role. The particle size distribution curve changes abruptly with the PPV due to the fragments created by the crushing process. This process consumes part of wave energy and reduces the stiffness of the filled joint. The transmission coefficient decreases with increasing PPV in this stage because of the increased amount of energy consumed by crushing. Moreover, with the increase of the frequency of the incident wave, the transmission coefficient decreases and fewer particles can be crushed. Under the same incident wave, the transmission coefficient decreases when the filled thickness increases and the filled particles become more difficult to be crushed.
机译:本文使用组合的有限离散元素法(FDEM)数值研究了在高幅度应力波下填充接头的地震响应。薄层独立的多边形颗粒用于模拟关节填充物。每个颗粒使用Delaunay三角测量方案啮合,并且当负载超过其强度时,可以压碎。研究了1D经度波通过单个填充接头的传播,考虑到接头厚度和入射波的特性,例如振幅和频率的影响。结果表明,在高幅度应力波下填充的颗粒主要经历三个变形阶段:(i)初始压实阶段; (ii)破碎阶段; (iii)破碎和压实阶段。在初始压实阶段和破碎和压实阶段,压实支配关节的机械行为,粒子区域分布曲线变化很小。在这些阶段,传导系数随着入射波的幅度的增加而增加,即峰值粒子速度(PPV)。另一方面,在破碎阶段,粒子压碎起到主导作用。由于破碎过程产生的片段,粒度分布曲线随着PPV而突然变化。该过程消耗了波能的一部分,并降低了填充接头的刚度。由于压碎量增加,透射系数随着PPV的增加而降低。此外,随着入射波的频率的增加,透射系数减少,粒子可以被压碎。在相同的入射波下,当填充的厚度增加并且填充的颗粒变得更难以被压碎时,透射系数降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号