首页> 外文期刊>Frontiers in Behavioral Neuroscience >Editorial: How Fear and Stress Shape the Mind
【24h】

Editorial: How Fear and Stress Shape the Mind

机译:社论:恐惧和压力如何塑造心灵

获取原文
           

摘要

How do fear and stress systems interact and how do they shape ongoing and future behavioral responses? In a classical definition of fear and stress, we think of threatening stimuli activating a species-specific defensive threat reaction. This defensive reaction triggers physiological stress responses including adrenal hormone release (for review see LeDoux, 2003 , 2012 ; Johnson et al., 2012 ). Knowledge of the microanatomy of conditioned threat memory is developing however, knowledge of its interaction with stress mediated adrenal steroid systems is still emerging (LeDoux, 2003 , 2012 ; Johnson and LeDoux, 2004 ; Prager and Johnson, 2009 ; Prager et al., 2010 ; Bergstrom et al., 2011 , 2013a , b ; Bergstrom and Johnson, 2014 ; Krugers et al. ). Studies have identified the key role of the lateral amygdala and within this nucleus the microanatomy of Pavlovian fear/threat memory consolidation, reconsolidation, and extinction has begun to be revealed (Bergstrom et al., 2011 , 2013a , b ; Bergstrom and Johnson, 2014 ). This Frontiers Research Topic builds on previous research by addressing key questions that reveal unique aspects and mechanisms of how fear and stress shape the mind. The fear neural circuitry includes; amygdala output circuits that directly activate the sympathetic nervous system and also the hypothalamic pituitary adrenal (HPA) axis, thereby including stress hormones in the negative emotional response ( Radley ). It is generally accepted that negative emotion involves a stress response, however what stress is and how it manifests in the body has been, and continues to be, vigorously investigated and debated. Radley summarizes detailed circuit tracing and connectivity approaches to understand the interaction between stress and fear systems in the brain. Proposing that the anterior bed nuclei of the stria terminalis (aBST) is the central point for regulation of chronic stress induced hyperactivity of the HPA axis. This GABA projecting nucleus, upstream of the PVH, receives convergent input from amygdala, prelimbic cortex, and other fear related nuclei. Aspects of amygdala anatomy and its control of HPA responding may underlie differences in mental responding to fear and stress (Johnson and LeDoux, 2004 ; Johnson et al., 2012 ; McGuire et al., 2013 ). Krugers et al. describe a series of studies in animals and humans that highlight the key time course and mechanisms of stress hormones norepinephrine and glucocorticoids in facilitating fear memories. They describe short-term rapid activation of NE Beta and Mineralocorticoid receptors (MR) in the postsynaptic space leads to rapid insertion of AMPA receptors in the postsynaptic membrane. Over a longer period (hours), Glucocorticoid receptors (GR) acting through genomic mechanisms also drive insertion of AMPA receptors into the postsynaptic membrane. These authors found that these multiple complementary cellular mechanisms facilitate and strengthen memories of stressful events. By identifying the fundamental mechanisms underlying structural changes in the fear system in response to threatening stimulus associations, Lamprecht describes changes to the actin cytoskeleton and suggests, that it may be essential for pre- and post- synaptic changes that occur in the dendrite spines (particularly in lateral amygdala and hippocampus) following fear conditioning. It was found that inhibitors of the actin cytoskeleton modify neuron structure and dampen long-term memory ( Lamprecht ). Starting from the assumption that age is a risk factor for anxiety disorders (Pardon and Rattray, 2008 ; Shoji and Mizoguchi, 2011 ), Beracochea et al. used stressed middle-aged and non-stressed young adult mice to understand the interaction between the fear circuitry and its link with anxiety disorder, memory, and pharmacology. When administered benzodiazepines in specific dose range, stressed middle-aged mice became like young adult non-stressed mice, on a hippocampal memory task. This provides the first evidence of a dynamic interaction between benzodiazepines and corticosterone levels, indicating a reduced stress effect and improved memory performance. Potential overlapping pathways between fear, stress, suicide, anxiety, and aging are identified by Choi et al., who found kinase gene expression levels increased in the prefrontal cortex of suicide victims compared to controls. Postnatal disruption of (kinase) genes by environmental factors may increase later pathophysiology increasing the risk of suicide. In addition to Kinase genes, other regulators of stress may be important indicators and pharmacological regulators of the amygdala-prefrontal cortex stress axis. McGuire et al. report that Neuropeptide Y (NPY) plays a role in integrating stress and emotion in part through regulation of CRH, and, that a dysregulation of NPY may leave an individual more exposed to the negative aspects of subsequent stress. Nolte et al. summarize important work on how attachment experiences during
机译:恐惧和压力系统如何互动,它们如何形成持续和未来的行为响应?在恐惧和压力的经典定义中,我们想到威胁刺激激活物种特异性防御​​威胁反应。这种防守反应触发了包括肾上腺激素释放,包括肾上腺激素释放的生理压力反应(用于审查Ledoux,2003,2012; Johnson等,2012)。了解条件威胁记忆的微创发展,然而,了解其与压力介导的肾上腺类固醇系统的相互作用仍然是新兴(Ledoux,2003,2012; Johnson和Ledoux,2004; Prager和Johnson,2009; Prager等,2010 ; Bergstrom等人,2011,2013a,b; bergstrom和约翰逊,2014; krugers等人。)。研究已经确定了外侧杏仁达拉的关键作用,并且在这个核中,帕夫洛维亚恐惧/威胁记忆内存整合,重新掩盖和灭绝的微创(Bergstrom等,2011,2013a,B; Bergstrom和Johnson,2014年)。这个边界的研究主题通过解决了以前的研究,通过解决了揭示了恐惧和压力如何塑造心态的独特方面和机制。恐惧神经电路包括; Amygdala输出电路直接激活交感神经系统以及下丘脑垂体肾上腺(HPA)轴,从而包括负面情绪反应(Radley)中的应力激素。普遍认为,负面情绪涉及压力反应,然而强调是什么以及它在身体中的表现如何,并且仍在继续进行大力调查和辩论。 Radley总结了详细的电路跟踪和连接方法,以了解大脑中应力和恐惧系统之间的相互作用。提出,StriaSivalis(ABST)的前床核是用于调节慢性应激诱导的HPA轴多动度的中心点。这种GABA突出的核,PVH上游,从Amygdala,Prelimbic皮质和其他恐惧相关细胞核接受收敛输入。 Amygdala解剖学的各个方面及其对HPA的控制可能会对恐惧和压力的心理响应的差异(Johnson et Al,2012; McGuire等,2013)。 Krugers等人。描述动物和人类中的一系列研究,突出了促进恐惧记忆中的应激激素Noreopinephrine和糖皮质激素的关键时间过程和机制。它们描述了突触前空间中NEβ和MINER相关的NEβ和MINRA)的短期快速活化导致突触后膜中的AMPA受体快速插入。在更长的时间(小时)中,通过基因组机制作用的糖皮质激素受体(GR)也将AMPA受体插入突触膜中。这些作者发现,这些多种互补细胞机制有助于和加强压力事件的回忆。通过确定恐惧系统中结构变化的基本机制,响应威胁刺激关联,Lamprecht描述了对肌动蛋白细胞骨架的变化并表明,枝晶脊柱中发生的突触前和突触后变化可能是必要的(特别是在恐惧调理后,在左侧杏仁杆菌和海马。发现肌动蛋白细胞骨架的抑制剂改性神经元结构和抑制长期记忆(LAMPRECHT)。从假设开始,年龄是焦虑症的危险因素(赦免和大鼠,2008; Shoji和Mizoguchi,2011),Beracochea等。二手强调的中年和非强调的年轻成年小鼠来了解恐惧电路与其与焦虑症,记忆和药理学的联系之间的相互作用。当特定剂量范围内施用苯二氮氧基己胺时,强调的中年小鼠就像年轻成人非应激小鼠一样,在海马记忆任务上。这提供了苯并二氮杂卓和皮质酮水平之间动态相互作用的第一种证据,表明应力效应降低和改善的记忆性能。恐惧,应力,自杀,焦虑和老化之间的潜在重叠途径由Choi等人鉴定。与对照相比,在自杀受害者的前额叶皮质中发现激酶基因表达水平增加。通过环境因素的后期破坏(激酶)基因可能会增加患病的病理生理学增加了自杀的风险。除了激酶基因外,其他应力调节剂可能是杏仁末端皮层应力轴的重要指标和药理调节因子。 McGuire等人。报告认为神经肽Y(NPY)在部分通过CRH的调节部分在整合压力和情绪方面发挥作用,并且,NPY的失调可能会使个体更加暴露于后续压力的负面方面。 Nolte等人。总结了关于依恋经验的重要工作

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号