首页> 外文期刊>Frontiers in Plant Science >Editorial: Polyamines in Plant Biotechnology, Food Nutrition, and Human Health
【24h】

Editorial: Polyamines in Plant Biotechnology, Food Nutrition, and Human Health

机译:编辑:植物生物技术,食品营养和人类健康的多胺

获取原文
           

摘要

Polyamines are small polycations derived from arginine and/or ornithine. These compounds are present in all living organisms and play common and organism-specific functions. Polyamines are present in most food products of plant and animal origin, thus having an impact on human nutrition and health. In this Topic, we aimed to cover both basic and applied research on polyamines in the areas of plant biotechnology, food nutrition, and human health. In plants, the most abundant polyamines are putrescine (Put), spermidine (Spd), and spermine (Spm). The control of polyamine levels is achieved through regulation of their biosynthesis, catabolism, and transport, which are modulated by the environment. Past and current research on polyamines has investigated basic processes of polyamine homeostasis, as a mean to obtain crops better adapted to climate change. The discovery of polyamine signaling pathways will also help in reaching this major goal. In this Topic, Zhao et al. report on the characterization of the Ornithine decarboxylase (ODC) enzyme from Hyosciamus niger , involved in Put biosynthesis. The ODC enzyme exhibits higher catalytic efficiency than other plant ODCs reported so far, thus providing an ideal candidate gene for polyamine biosynthesis engineering. Sekula and Dauter report on the crystal structure of Agmatine iminohydrolase involved in Put biosynthesis from arginine and identify that the dimeric assembly of monomers is drastically different from the bacterial enzyme. The same authors also obtained crystals of spermidine synthase, involved in Spd formation, and characterized the structures of the two dimeric enzyme isoforms in Arabidopsis ( Sekula and Dauter ). Plants also contain thermospermine (tSpm), a less abundant but very relevant polyamine synthesized from Spd by thermospermine syntase (tSPM), in a reaction that is conserved throughout the plant kingdom ( Solé-Gil et al. ). According to these authors, tSPM might play developmental and/or stress-related roles in addition to the confirmed function in regulating xylem cells maturation, in both non-vascular and vascular plants. Ishitsuka et al. have shown that the response to tSpm is conserved in dicots and monocots and plays a role in translational enhancement that could be eventually applied as a biotechnological tool in animal and fungal systems. The work by Zarza et al. shows that Spm triggers a quick phosphatidic acid response in Arabidopsis, which is mainly mediated by phospholipase D. Their results suggest the participation of phosphatidic acid in Spm perception. The cellular content of polyamines is also regulated by degradation mediated by diamine and polyamine oxidases (DAO and PAO). These catabolic processes and their diverse functions in plants have been reviewed by Wang et al. and include the involvement of polyamine catabolism in fruit ripening, senescence, and stress responses. Arabidopsis has four genes homologs of the human histone demethylase LSD1 (LDL1-3 and FLD) that bear a flavin amine oxidase domain, and act differently in the control of flowering time ( Martignago et al. ). This contribution evidences the role of different epigenetic mechanisms in the control of plant development and defense and their impact on agronomical traits. The participation of polyamines in many aspects of plant development is well known. In this regard, Nambeesan et al. report that Spd impacts floral organ identity and fruit set in tomato involving GA metabolism and signaling. These authors also suggested that altered polyamine ratios may regulate floral developmental processes. A role for free polyamines in pollination of Pyrus communis flowers is also suggested ( Mandrone et al. ). Both tSPM synthase and DAO are required for zygotic embryogenesis and vascular development in Scots pine ( Vuosku et al. ). According to the authors, specific manipulation of polyamine gene expression might provide a way to enhance somatic embryo production in recalcitrant Scots pine lines with important biotechnological applications. Furthermore, the work from Sobieszczuk-Nowicka et al. contributes to a better understanding of the cellular and molecular mechanisms underlying senescence-related cell death. Numerous studies have reported increased levels of polyamines under conditions of abiotic and biotic stresses. In fact, Spm has been proposed as a plant defense activator to both type of stresses ( Seifi and Shelp ). Under abiotic stress, Spm promotes abscisic acid (ABA) biosynthesis ( Marco et al. ) and activates ABA-mediated signaling pathways ( Seifi and Shelp ). Spm also modulates oxidative/antioxidant responses ( Seo et al. ) and promotes transcription of several defense-related genes including some involved in polyamine metabolism ( Fortes et al. ). In contrast to glycophytes [i.e., pepper; ( Pi?ero et al. )], the levels of Spd/Spm are high in halophytes, thus polyamines have been proposed as useful indicators of plant salinity adaptation ( Bueno and Cordovill
机译:多胺是衍生自精氨酸和/或鸟氨酸的小型聚合物。这些化合物存在于所有生物体中,并发挥常见和生物特异性功能。多胺存在于植物和动物来源的大多数食物中,因此对人类营养和健康产生影响。在本主题中,我们旨在涵盖植物生物技术,食品营养和人类健康领域的基础和应用研究。在植物中,最丰富的多胺是Putrescine(Put),亚精胺(SPD)和精胺(SPM)。通过调节它们的生物合成,分解代谢和运输来实现多胺水平的控制,这些分解代谢和通过环境调节。多胺的过去和目前研究已经研究了多胺稳态的基本过程,作为获得更好适应气候变化的作物的含义。多胺信号传导途径的发现也有助于到达这一主要目标。在这个主题中,赵等人。报告Hyosciamus Niger的鸟氨酸脱羧酶(ODC)酶的表征,参与放入生物合成。 ODC酶表现出比到目前为止所报告的其他植物ODC的催化效率更高,因此为多胺生物合成工程提供了理想的候选基因。 Sekula和Dauter报告关于从精氨酸放入生物合成的agmatine咪唑酶的晶体结构的报告,并鉴定单体的二聚体组装与细菌酶的巨大不同。同样的作者还获得了亚硫酸盐合酶的晶体,参与了SPD形成,并表征了拟南芥(Sekula和Dauter)中的两种二聚体酶同种型的结构。植物还含有热磷酸盐(TSPM),在整个植物王国保守的反应中,从SPD通过SPD含有较小但非常相关的多胺,这是一种植物王国(Solé-Gil等人)。根据这些作者的说法,除了在非血管和血管植物中,除了确诊功能外,TSPM还可以发挥发育和/或应力相关的作用。 Ishitsuka等人。已经表明,对TSPM的反应在Dicots和单焦点中保存,并在转化增强中发挥作用,最终可以作为动物和真菌系统中的生物技术工具。 Zarza等人的工作。表明SPM触发拟南芥的快速磷脂酸反应,这主要由磷脂酶D介导。它们的结果表明磷脂酸在SPM感知中的参与。多胺的细胞含量也通过二胺和多胺氧化酶(DAO和PAO)介导的降解调节。王等人审查了这些分解代谢过程及其在植物中的各种功能。包括聚酰胺分解代谢在果实成熟,衰老和应激反应中的参与。拟南芥有四个基因的人组蛋白脱甲基酶LSD1(LDL1-3和FLD)的同源物,其承受黄素胺氧化酶结构域,并在开花时间(Martignago等)的控制中不同地行动。这一贡献证明了不同表观遗传机制在植物开发和防御控制中的作用及其对农艺性状的影响。多胺的参与在植物开发的许多方面是众所周知的。在这方面,Nambeesan等人。报告认为,SPD会影响番茄中的花式器官身份和水果,涉及Ga新陈代谢和信令。这些作者还建议改变的多胺比率可以调节花卉发育过程。还提出了自由聚酰胺在Pyrus Communis花授粉中的作用(Mandrone等人)。在苏格兰松树(Vuosku等)中,血管胚胎发生和血管发育都需要TSPM合酶和DAO。根据作者,多胺基因表达的具体操纵可以提供一种具有重要生物技术应用的顽固菌群松树中体细胞胚胎生产的方法。此外,来自Sobieszczuk-nowicka等的工作。有助于更好地理解衰老相关细胞死亡的细胞和分子机制。许多研究报告了非生物和生物应激条件下的多胺水平增加。事实上,SPM已被提出为植物防御活化剂到两种应力(SEIFI和SHELP)。在非生物胁迫下,SPM促进脱落酸(ABA)生物合成(Marco等)并激活ABA介导的信号传导途径(SEIFI和SHELP)。 SPM还调节氧化/抗氧化反应(SEO等人)并促进几种无保护相关基因的转录,包括一些参与多胺代谢(Fortes等)。与糖糖细胞相比[即胡椒; (PI?ERO等人)],SPD / SPM的水平在卤素中高,因此已经提出了多胺作为植物盐度适应的有用指标(Bueno和Cordovill

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号