首页> 外文期刊>Frontiers in Plant Science >Editorial: Ethylene Biology and Beyond: Novel Insights in the Ethylene Pathway and Its Interactions
【24h】

Editorial: Ethylene Biology and Beyond: Novel Insights in the Ethylene Pathway and Its Interactions

机译:社论:乙烯生物学及以外:乙烯途径的新洞察力及其相互作用

获取原文
           

摘要

This Research Topic presents selected contributions to Ethylene 2018 , the XI International Symposium on the Plant Hormone Ethylene , held in Chania, Greece, on 2nd?6th June 2018, covering exciting new discoveries in the ethylene field. This issue brings novel insights in ethylene signaling in bacteria, algae, and lower plants as well as evidence supporting a specific role for the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in plants. Ethylene receptors were initially thought to be specific to plants. Interestingly, ethylene receptor homologs have been found in cyanobacteria. It was previously shown that in Synechocystis sp. an ethylene receptor regulates phototaxis and biofilm formation. In this issue, the same group ( Allen et al. ) demonstrates that another cyanobacterium, the filamentous species Geitlerinema sp. which possesses two ethylene receptor homologs, similarly displays ethylene-dependent alterations in phototaxis, suggesting that such signaling could be prevalent in cyanobacteria. Both species are highly sensitive to ethylene although their ethylene binding characteristics resemble that of plants, thus suggesting signal amplification in cyanobacteria. In higher plants, subfamily-I of the Arabidopsis receptors (ETR1 and ERS1) and their interactions with downstream players have been extensively studied, while information on subfamily-II (ETR2, ERS2, and EIN4) remains sparse. Here, Berleth et al. demonstrate that ETR2 displays comparable affinities for CTR1 and EIN2 to that previously reported for ETR1, suggesting similar protein-protein interaction-mediated signal transfer for both subfamilies. In addition, the authors show enhanced stability of type-II receptor homomers and type-II:type-I heteromers as compared to type-I homomers, emphasizing the importance of type-II receptors. Wang and Qiao present a mini-review on the transcriptional regulation of the ethylene response in Arabidopsis. Ethylene signaling involves numerous regulatory steps leading to a diversity of responses in plant growth and development. This review discusses our current understanding of the transcriptional regulation as a major control point in ethylene signaling, focusing on recent insights into the role of chromatin modification in repressing transcription. Dolgikh et al. summarize recent advances on the molecular mechanisms that underlie EIN3/EIL1-directed ethylene signaling in Arabidopsis, and focus on the role of EIN3/EIL in tuning transcriptional regulation of ethylene response in time and space. Furthermore, they consider the role of EIN3/EIL1-independent regulation of ethylene signaling. Qin et al. review hormonal crosstalk of ethylene in primary root growth of Arabidopsis and rice. Based on the proposed model, ethylene restricts primary root growth by governing auxin biosynthesis, transport, and signaling through EIN3/EIL1, ERF1, and HB52 interactions in Arabidopsis. ABA and CKs constrain primary root growth by controlling the posttranscriptional regulation of ACS resulting in stimulated ethylene synthesis. GA and ethylene antagonistically regulate stability of DELLA proteins, which act as growth repressors. Low levels of BRs hinder ethylene synthesis by BZR1 and BES1 suppressed ACS gene expression, while high levels of BRs increase ACS stability. Through a different mechanism, ethylene restricts primary root growth in rice, by augmenting auxin and ABA biosynthesis. Understanding light-dependent differences in ethylene synthesis and signaling is essential to expand our insight into the roles of ethylene in growth and development across the plant life cycle. Harkey et al. performed a meta-analysis of multiple transcriptomic datasets to uncover responses to ethylene that are both light-dependent and light-independent. A set of 139 transcripts with robust and consistent responses to elevated ethylene across root-specific datasets was identified. This “gold standard” group of ethylene-regulated transcripts includes numerous genes encoding proteins that function in ethylene signaling and synthesis. The study further reveals a number of previously uncharacterized factors that may contribute to ethylene response phenotypes. Plants synthesize ethylene in a two-step reaction starting with the conversion of S-adenosyl-L-methionine (SAM) to 1-aminocyclopropane-1-carboxylic acid (ACC). Vanderstraeten et al. demonstrated that ACC affects early vegetative development independently of ethylene signaling. Using ethylene biosynthesis and signaling inhibitors, as well as mutants, ACC-specific ethylene-independent growth responses in both dark- and light-grown Arabidopsis seedlings were revealed. Hence, researchers employing ACC as an ethylene precursor should be mindful of putative ACC effects confounding ethylene responses in vegetative growth. The exact mechanism underlying the ACC response remains to be identified. While ACC may play an ethylene-independent role in plant growth and development, the three-membe
机译:本研究主题为2018年6月6日在希腊举行的Chania举行的植物激素乙烯上的乙烯二氧化体素讨论会的选定贡献,于2018年6月6日,涵盖了亚乙基领域的令人兴奋的新发现。该问题在细菌,藻类和低层植物中为乙烯信号传导的新颖见解以及支持植物中乙烯前体1-氨基环丙烷-1-羧酸(ACC)的特定作用的证据。最初认为乙烯受体是特定于植物的。有趣的是,在蓝藻中发现了乙烯受体同源物。以前认为在SyneChocystis sp中。乙烯受体调节光晶和生物膜形成。在这个问题中,同一组(Allen等人)证明了另一种蓝藻,丝状物种Geitlerinema Sp。具有两个乙烯受体同源物,类似地显示光炎中的乙烯依赖性改变,表明这种信号在蓝藻中可能是普遍的。两种物种对乙烯非常敏感,尽管它们的乙烯结合特性类似于植物的乙烯,因此表明在蓝藻中的信号放大。在高等植物中,拟南芥受体(ETR1和ERS1)的亚家族 - 已经过度研究了与下游玩家的相互作用,同时有关亚家族-II(ETR2,ERS2和EIN4)的信息仍然稀疏。在这里,Berleth等人。证明ETR2对先前报道的ETR1显示的CTR1和EIN2的可比性,表明亚壳的类似蛋白质 - 蛋白质相互作用介导的信号转移。此外,作者表现出II型受体均方的增强稳定性和II型:与I型均多相比,I型异代么,强调II型受体的重要性。王和乔展示了关于拟南芥乙烯反应的转录调节的迷你评论。乙烯信号传导涉及许多监管步骤,导致植物生长和发展中的响应的多样性。本次审查讨论了我们目前对转录调节作为乙烯信号传导中的主要控制点的理解,重点是近染色质修饰在压制转录中的作用的见解。 Dolgikh等人。总结最近对拟南芥内艾因3 / EIL1针对乙烯信号传导的分子机制的进展,并专注于EIN3 / EIL在时间和空间中调整乙烯反应转录调节的作用。此外,他们认为EIN3 / EIL1独立调节乙烯信号传导的作用。 Qin等人。审查丙烯丙烯串的丙烯亚征管生长拟南芥和水稻。基于所提出的模型,乙烯通过用EIN3 / EIL1,ERF1,ERF1和HB52相互作用来限制通过治疗生长素生物合成,转运和信号传导来限制初级根生长。 ABA和CKS通过控制ACS的后剖析调节产生刺激的乙烯合成来限制初级根生长。 GA和乙烯拮抗稳定性调节Della蛋白的稳定性,其充当生长阻遏物。 BZR1和BES1抑制ACS基因表达的低水平BRS阻碍乙烯合成,而高水平的BRS增加ACS稳定性。通过不同的机制,乙烯通过增强生长素和ABA生物合成来限制水稻中的原发性根生长。了解乙烯合成和信号传导的光依赖性差异对于扩大我们对乙烯在植物生命周期的生长和发育中的作用中的洞察力方面至关重要。 Harkey等人。对多个转录组数据集进行了荟萃分析,以发现对乙烯的反应,乙烯依赖于光依赖性和无关。鉴定了一组具有稳健的139种转录物,对升高的乙烯跨越根特异性数据集。该“黄金标准”乙烯调节转录物组包括许多编码在乙烯信号传导和合成中起作用的蛋白质的基因。该研究进一步揭示了可能导致亚乙基响应表型的一些先前无表的因素。植物在从S-腺苷-1-甲硫氨酸(SAM)转化为1-氨基环丙烷-1-羧酸(ACC)开始的两步反应中合成乙烯。 vanderstraeten等人。证明ACC独立于乙烯信号传导影响早期营养开发。揭示了使用乙烯生物合成和信号抑制剂以及突变体,突变体,在深色和拟征拟南芥幼苗中均有乙烯无关的生长反应。因此,使用ACC作为乙烯前体的研究人员应该注意推定的ACC效应营养生长中的乙烯反应。 ACC响应依赖的确切机制仍有待确定。当ACC可能在植物生长和发展中发挥乙烯 - 独立作用,而这是三个Membe

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号