首页> 外文期刊>Frontiers in Physiology >Multiscale Modeling Framework of Ventricular-Arterial Bi-directional Interactions in the Cardiopulmonary Circulation
【24h】

Multiscale Modeling Framework of Ventricular-Arterial Bi-directional Interactions in the Cardiopulmonary Circulation

机译:心肺循环中心室动脉双向相互作用的多尺度建模框架

获取原文
获取外文期刊封面目录资料

摘要

Ventricular-arterial coupling plays a key role in the physiologic function of the cardiovascular system. We have previously described a hybrid lumped-finite element (FE) modeling framework of the systemic circulation that couples idealized FE models of the aorta and the left ventricle (LV). Here, we describe an extension of the lumped-FE modeling framework that couples patient-specific FE models of the left and right ventricles, aorta and the large pulmonary arteries in both the systemic and pulmonary circulations. Geometries of the FE models were reconstructed from magnetic resonance (MR) images acquired in a pediatric patient diagnosed with pulmonary arterial hypertension (PAH). The modeling framework was calibrated with pressure waveforms acquired in the heart and arteries by catheterization as well as ventricular volume and arterial diameter waveforms measured from MR images. The calibrated model hemodynamic results match well with the clinically-measured waveforms (volume and pressure) in the LV and right ventricle (RV) as well as with the clinically-measured waveforms (pressure and diameter) in the aorta and main pulmonary artery. The calibrated framework was then used to simulate three cases, namely, (1) an increase in collagen in the large pulmonary arteries, (2) a decrease in RV contractility, and (3) an increase in the total pulmonary arterial resistance, all characteristics of progressive PAH. The key finding from these simulations is that hemodynamics of the pulmonary vasculature and RV wall stress are more sensitive to vasoconstriction with a 10% of reduction in the lumen diameter of the distal vessels than a 67% increase in the proximal vessel's collagen mass.
机译:心室动脉耦合在心血管系统的生理功能中起着关键作用。我们之前已经描述了一种混合集总有限元(FE)建模框架的系统循环,耦合主动脉和左心室(LV)的理想化Fe模型。在这里,我们描述了集成的FE模型框架的扩展,以伴随左心室的患者特异性Fe模型,主动脉和肺动脉循环的患者特定的Fe模型。从被诊断患有肺动脉高压(PAH)的小儿患者中获得的磁共振(MR)图像重建了FE模型的几何形状。用导管插入的心脏和动脉中获取的压力波形以及从MR图像测量的心室体积和动脉直径波形进行建模框架。校准的模型血液动力学结果与LV和右心室(RV)中的临床测量的波形(体积和压力)以及主动脉和主要肺动脉中的临床测量的波形(压力和直径)匹配。然后使用校准的框架来模拟三种情况,即(1)大型肺动脉中胶原蛋白的增加,(2)降低RV收缩性,并增加了总肺动脉抵抗力,所有特征渐进的Pah。从这些模拟中发现的关键是肺脉管系统和RV壁应力的血流动力学对血管收缩更敏感,远端血管的腔直径减少10%,而不是近端容器的胶原质量增加67%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号