首页> 外文期刊>Frontiers in Physiology >Multifractal Desynchronization of the Cardiac Excitable Cell Network During Atrial Fibrillation. I. Multifractal Analysis of Clinical Data
【24h】

Multifractal Desynchronization of the Cardiac Excitable Cell Network During Atrial Fibrillation. I. Multifractal Analysis of Clinical Data

机译:心房颤动期间心脏激发细胞网络的多重反应性去同步。 I.临床数据的多重分析分析

获取原文
获取外文期刊封面目录资料

摘要

Atrial fibrillation (AF) is a cardiac arrhythmia characterized by rapid and irregular atrial electrical activity with a high clinical impact on stroke incidence. Best available therapeutic strategies combine pharmacological and surgical means. But when successful, they do not always prevent long-term relapses. Initial success becomes all the more tricky to achieve as the arrhythmia maintains itself and the pathology evolves into sustained or chronic AF. This raises the open crucial issue of deciphering the mechanisms that govern the onset of AF as well as its perpetuation. In this study, we develop a wavelet-based multi-scale strategy to analyze the electrical activity of human hearts recorded by catheter electrodes, positioned in the coronary sinus (CS), during episodes of AF. We compute the so-called multifractal spectra using two variants of the wavelet transform modulus maxima method, the moment (partition function) method and the magnitude cumulant method. Application of these methods to long time series recorded in a patient with chronic AF provides quantitative evidence of the multifractal intermittent nature of the electric energy of passing cardiac impulses at low frequencies, i.e., for times (?0.5 s) longer than the mean interbeat (? 10~(?1) s). We also report the results of a two-point magnitude correlation analysis which infers the absence of a multiplicative time-scale structure underlying multifractal scaling. The electric energy dynamics looks like a “multifractal white noise” with quadratic (log-normal) multifractal spectra. These observations challenge concepts of functional reentrant circuits in mechanistic theories of AF, still leaving open the role of the autonomic nervous system (ANS). A transition is indeed observed in the computed multifractal spectra which group according to two distinct areas, consistently with the anatomical substrate binding to the CS, namely the left atrial posterior wall, and the ligament of Marshall which is innervated by the ANS. In a companion paper (II. Modeling), we propose a mathematical model of a denervated heart where the kinetics of gap junction conductance alone induces a desynchronization of the myocardial excitable cells, accounting for the multifractal spectra found experimentally in the left atrial posterior wall area.
机译:心房颤动(AF)是一种心律失常,其特征在于快速和不规则的心房电活性,具有高临床影响的中风发病率。最佳可用治疗策略结合了药理学和手术手段。但是,当成功时,他们并不总是防止长期复发。由于心律失常维持自身,并且病理进入持续或慢性AF,初始成功变得更加棘手。这提出了破译控制AF的发作的机制的开放关键问题以及其永久性的机制。在本研究中,我们开发了基于小波的多尺度策略,以分析在AF的发作期间冠状窦(CS)中的导管电极记录的人体心脏的电活动。我们使用小波变换模量最大方法的两个变体来计算所谓的多法谱,即矩(分区功能)方法和幅度累积方法。这些方法在慢性AF的患者中将这些方法应用于慢性AF的患者中的定量证据提供了在低频下通过心脏脉冲的电能的多重分开间歇性的定量证据,即时间(Δ0.5秒)长于平均杂交( ?10〜(?1))。我们还报告了两点幅度相关分析的结果,其缺少乘法缩放的乘法时间级结构的缺失。电能动力学看起来像具有二次(逻辑正常)多法谱的“多重术白噪声”。这些观察结果在AF的机械理论中挑战功能重圈电路的概念,仍然留下自主神经系统(ANS)的作用。在计算的多法谱中,在根据两个不同的区域中,在计算的多法谱中观察到过渡,该不同区域始终与与Cs的解剖学底物,即左心房后壁,以及由ANS支配的马歇尔的韧带。在伴侣论文(建模)中,我们提出了一种虚心心脏的数学模型,其中间隙结电导的动力学单独诱导心肌激发细胞的去同步,占在左心房后壁区域实验发现的多重分子光谱。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号