...
首页> 外文期刊>Frontiers in Materials >High Temperature and Ion Implantation-Induced Phase Transformations in Novel Reduced Activation Si-Fe-V-Cr (-Mo) High Entropy Alloys
【24h】

High Temperature and Ion Implantation-Induced Phase Transformations in Novel Reduced Activation Si-Fe-V-Cr (-Mo) High Entropy Alloys

机译:新型高温和离子注入诱导的新型活化Si-Fe-V-Cr(-mo)高熵合金的相变

获取原文
           

摘要

For fusion to be realised as a safe, sustainable source of power, new structural materials need to be developed which can withstand high temperatures and the unique fusion radiation environment. An attractive aspect of fusion is that no long-lived radioactive wastes will be produced, but to achieve this structural materials must comprise reduced activation elements. Compositionally complex alloys (CCAs) (also called high entropy alloys, HEAs) are promising candidates for use in extreme environments, including fusion, but few reported to date have low activation. To address these material challenges we have produced novel, reduced activation, HEAs by arc-melting, and investigated their thermal stability, and radiation damage resistance using 5 MeV Au2+ ion implantation. Whilst the alloys were designed to form single phase BCC, using room temperature and non-ambient in situ X-ray diffraction we have revealed the thermodynamically stable structure of these alloys is in fact a sigma phase. We propose that a BCC phase is formed in these alloys, but at high temperatures (> 1000 °C). A BCC phase was also formed during heavy ion implantation, which we propose to be due to the rapid heating and cooling that occurs during the thermal spike, effectively freezing in the BCC phase produced by an implantation induced phase transformation. The BCC phase was found to have high hardness and a degree of ductility, making these new alloys attractive in the development of reduced activation HEAs for nuclear applications.
机译:为了实现融合,以安全,可持续的电源来源,需要开发新的结构材料,可以承受高温和独特的融合辐射环境。融合的有吸引力的方面是,不会产生长寿的放射性废物,但是为了实现这种结构材料必须包括减少的活化元素。合成的复合合金(CCA)(也称为高熵合金,HEA)是在极端环境中使用的承诺候选人,包括融合,但迄今为止迄今为止的激活率很少。为了解决这些材料挑战,我们通过弧形熔化产生了新颖,减少的激活,赋予遗传,并研究了使用5MeV AU2 +离子注入的热稳定性和辐射损伤阻力。虽然合金被设计为形成单相BCC,但是使用室温和非环境的原位X射线衍射,我们揭示了这些合金的热力学稳定的结构实际上是σ相。我们提出在这些合金中形成BCC阶段,但在高温(> 1000℃)中形成了BCC阶段。在重离子注入期间也形成了BCC阶段,这是由于在热穗期间发生的快速加热和冷却,因此在热括号中发生的快速加热和冷却,在通过植入诱导的相变产生的BCC相中冻结。发现BCC阶段具有高硬度和延展性程度,使得这些新的合金对核应用的减少的激活发育有吸引力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号