...
首页> 外文期刊>Frontiers in Marine Science >Chemical Exposure Due to Anthropogenic Ocean Acidification Increases Risks for Estuarine Calcifiers in the Salish Sea: Biogeochemical Model Scenarios
【24h】

Chemical Exposure Due to Anthropogenic Ocean Acidification Increases Risks for Estuarine Calcifiers in the Salish Sea: Biogeochemical Model Scenarios

机译:由于人为海洋酸化导致的化学曝光会增加盐水中偏卤素钙化剂的风险:生物地球化学模型情景

获取原文

摘要

Ocean acidification is projected to have profound impacts on marine ecosystems and resources, especially in the estuarine habitats. Here, we describe biological risks under current exposure of anthropogenic ocean acidification in the Salish Sea, an estuarine system that already experiences inherently low OA conditions. We used the PNNL/DOE Salish Sea biogeochemical model (SSM) informed by a selection of OA-related biological thresholds of ecologically and economically important calcifiers, pteropods and Dungeness crabs. The SSM was implemented to assess current exposure and associated risk due to reduced aragonite saturation state (Ωar) and pH conditions with respect to the magnitude, duration and severity of exposure below the biological thresholds in the Salish Sea and compare it to the pre-industrial time. We further investigated individual effects of atmospheric CO2 uptake and nutrient-driven eutrophication on the changes in the chemical exposure since the pre-industrial time. Our model predicts an average decrease in Ωar of about 0.11 and average decrease in pH of about 0.06 in the top 100 m of the water column of the Salish Sea since the pre-industrial times that predispose pelagic calcifiers to increased magnitude, duration and severity of exposure. Accordingly, we demonstrate that present-day exposure is below the thresholds for pteropod sublethal effects across the entire Salish Sea basin, while mortality threshold exposure occurs on a spatially limited basis. The greatest risk for the larval Dungeness crabs is associated with the spatially limited exposures to low calcite saturation state in the South Sound in the springtime, where an increase in internal dissolution could induce additional energetic costs. The main anthropogenic driver behind the predicted impacts is atmospheric CO2 uptake, while nutrient-driven eutrophication plays only a marginal role over spatially and temporally limited scales. Reduction of CO2 emissions can help sustain biological species vital for ecosystem functions and society.
机译:预计海洋酸化会对海洋生态系统和资源产生深远的影响,特别是在河口栖息地。在这里,我们描述了在盐水盐水中的当前暴露的人为海洋酸化的生物风险,这是已经经历了固有的低OA条件的酯氨基系统。我们使用了PNNL / DOE SARISH SEA BIOGEOCHEMICE模型(SSM)通过选择与生态和经济上重要的钙化剂,Pteropods和Dunyence螃蟹的相关的OA相关的生物学阈值。实施SSM以评估当前暴露和相关的风险,因为在盐水中的生物阈值低于生物阈值的幅度,持续时间,持续时间和暴露的严格,持续时间和严重程度,并将其与预工业预先进行时间。我们进一步研究了大气二氧化碳吸收和营养驱动的富营养量对自工工业时间以来化学暴露的变化的个性化。我们的模型预测ωAR的平均降低约0.11,并且在盐水的水柱的前100米处的PH值下降约0.06的平均降低,因为这是易患型钙钙化剂以提高幅度,持续时间和严重程度的工业次数接触。因此,我们证明现在的曝光低于整个轧机盆地的Pteropod致重效应的阈值,而死亡率阈值暴露在空间有限的基础上发生。幼虫螃蟹的最大风险与春天的南声中的空间有限的风险与南风中的低方解石饱和状态有关,其中内部溶解的增加可能会引起额外的能量成本。预测的影响背后的主要人为司机是大气二氧化碳吸收,而营养驱动的富营养化只在空间和时间有限的尺度上仅发挥边际作用。减少二氧化碳排放可以帮助维持生态系统功能和社会至关重要的生物物种。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号