...
首页> 外文期刊>Frontiers in Microbiology >Flavoprotein-Mediated Tellurite Reduction: Structural Basis and Applications to the Synthesis of Tellurium-Containing Nanostructures
【24h】

Flavoprotein-Mediated Tellurite Reduction: Structural Basis and Applications to the Synthesis of Tellurium-Containing Nanostructures

机译:黄酮蛋白介导的碲酸盐减少:结构基础和应用于含碲纳米结构的合成

获取原文

摘要

The tellurium oxyanion tellurite (TeO_(3)~(2-)) is extremely harmful for most organisms. It has been suggested that a potential bacterial tellurite resistance mechanism would consist of an enzymatic, NAD(P)H-dependent, reduction to the less toxic form elemental tellurium (Te~(0)). To date, a number of enzymes such as catalase, type II NADH dehydrogenase and terminal oxidases from the electron transport chain, nitrate reductases, and dihydrolipoamide dehydrogenase (E3), among others, have been shown to display tellurite-reducing activity. This activity is generically referred to as tellurite reductase (TR). Bioinformatic data resting on some of the abovementioned enzymes enabled the identification of common structures involved in tellurite reduction including vicinal catalytic cysteine residues and the FAD/NAD(P)~(+)-binding domain, which is characteristic of some flavoproteins. Along this line, thioredoxin reductase (TrxB), alkyl hydroperoxide reductase (AhpF), glutathione reductase (GorA), mercuric reductase (MerA), NADH: flavorubredoxin reductase (NorW), dihydrolipoamide dehydrogenase, and the putative oxidoreductase YkgC from Escherichia coli or environmental bacteria were purified and assessed for TR activity. All of them displayed in vitro TR activity at the expense of NADH or NADPH oxidation. In general, optimal reducing conditions occurred around pH 9–10 and 37°C. Enzymes exhibiting strong TR activity produced Te-containing nanostructures (TeNS). While GorA and AhpF generated TeNS of 75 nm average diameter, E3 and YkgC produced larger structures (>100 nm). Electron-dense structures were observed in cells over-expressing genes encoding TrxB, GorA, and YkgC.
机译:碲氧基碲酸盐(Teo_(3)〜(2-)对于大多数生物来说是极为有害的。已经提示潜在的细菌碲沸菌抗性机制将包括酶,NAD(P)H依赖性,降低到较小的毒性形式的元素碲(TE〜(0))。迄今为止,已显示许多酶如过氧化氢酶,硝酸盐还原酶和二氢丙基酰胺脱氢酶(E3)等的末端氧化酶等呈碲酸盐减少活性。该活动通常被称为碲酸盐还原酶(TR)。依赖于一些上述酶的生物信息数据使鉴定鉴定碲酸盐还原的常见结构,包括邻肠催化半胱氨酸残基和FAD / NAD(P)〜(+)结合结构域,其是一些黄蛋白的特征。沿着该线,硫氧嗪还原酶(TRXB),烷基氢过氧化物还原酶(AHPF),谷胱甘肽还原酶(Gora),含汞还原酶(MERA),NADH:Flavorydrodoxin还原酶(NORW),二氢丙酰胺脱氢酶和来自大肠杆菌或环境的推定氧化还原酶Ykgc纯化细菌并评估TR活性。所有这些都以牺牲NADH或NADPH氧化为代价的体外TR活动。通常,最佳的还原条件发生在pH 9-10和37℃周围。表现出强TR活性的酶产生含TE的纳米结构(数十)。虽然Gora和AHPF产生了数度的75nm平均直径,E3和YKGC产生了更大的结构(> 100nm)。在编码Trxb,Gora和Ykgc的细胞过度表达基因中观察到电子致密结构。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号