首页> 外文期刊>Global change biology bioenergy >Sustainable limits to crop residue harvest for bioenergy: maintaining soil carbon in Australia's agricultural lands
【24h】

Sustainable limits to crop residue harvest for bioenergy: maintaining soil carbon in Australia's agricultural lands

机译:生物能源作物残留收获的可持续限制:维持澳大利亚农业土地的土壤碳

获取原文
           

摘要

The use of crop residues for bioenergy production needs to be carefully assessed because of the potential negative impact on the level of soil organic carbon (SOC) stocks. The impact varies with environmental conditions and crop management practices and needs to be considered when harvesting the residue for bioenergy productions. Here, we defined the sustainable harvest limits as the maximum rates that do not diminish SOC and quantified sustainable harvest limits for wheat residue across Australia's agricultural lands. We divided the study area into 9432 climate-soil (CS) units and simulated the dynamics of SOC in a continuous wheat cropping system over 122?years (1889 – 2010) using the Agricultural Production Systems sIMulator (APSIM). We simulated management practices including six fertilization rates (0, 25, 50, 75, 100, and 200?kg N?hasup?1/sup) and five residue harvest rates (0, 25, 50, 75, and 100%). We mapped the sustainable limits for each fertilization rate and assessed the effects of fertilization and three key environmental variables – initial SOC, temperature, and precipitation – on sustainable residue harvest rates. We found that, with up to 75?kg N?hasup?1/sup fertilization, up to 75% and 50% of crop residue could be sustainably harvested in south-western and south-eastern Australia, respectively. Higher fertilization rates achieved little further increase in sustainable residue harvest rates. Sustainable residue harvest rates were principally determined by climate and soil conditions, especially the initial SOC content and temperature. We conclude that environmental conditions and management practices should be considered to guide the harvest of crop residue for bioenergy production and thereby reduce greenhouse gas emissions during the life cycle of bioenergy production.
机译:由于对土壤有机碳(SoC)股水平的潜在负面影响,需要仔细评估作物残留物的使用进行生物能量生产。影响因环境条件和作物管理实践而异,并且需要考虑在收获生物能量的残留物时。在这里,我们将可持续收集限制定义为在澳大利亚农业土地上的小麦残留量不贬低SoC和量化的可持续收集限值的最高利率。我们将研究区分为9432个气候 - 土壤(CS)单位,并在122岁以下(1889 - 2010)中的连续小麦种植系统中模拟了SoC的动态,采用农业生产系统模拟器(APSIM)。我们模拟管理实践,包括六种施肥率(0,25,50,75,100和200?kg n?ha ?1 )和五个残留的收获速率(0,25,50,75, 100%)。我们为每种施肥率进行了可持续限制,并评估了施肥和三个关键环境变量的影响 - 初始SoC,温度和降水 - 对可持续的残留率收获率。我们发现,高达75?kg n?ha 施肥,施肥高达75%和50%的作物残留物可以在澳大利亚西南部和东南部和东南部和50%。较高的施肥率达到可持续残留率的进一步增加。可持续的残留收获率主要通过气候和土壤条件确定,尤其是初始SOC含量和温度。我们得出结论,应考虑环境条件和管理措施,以指导生物能源生产的作物残留物收获,从而减少生物能源生产生命周期期间的温室气体排放。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号