首页> 外文期刊>Global Challenges >Nanoengineered Advanced Materials for Enabling Hydrogen Economy: Functionalized Graphene–Incorporated Cupric Oxide Catalyst for Efficient Solar Hydrogen Production
【24h】

Nanoengineered Advanced Materials for Enabling Hydrogen Economy: Functionalized Graphene–Incorporated Cupric Oxide Catalyst for Efficient Solar Hydrogen Production

机译:用于实现氢气经济性的纳工程先进材料:官能化石墨烯掺入铜氧化物催化剂,用于高效的太阳能氢气生产

获取原文
           

摘要

Cupric oxide (CuO) is a promising candidate as a photocathode for visible‐light‐driven photo‐electrochemical (PEC) water splitting. However, the stability of the CuO photocathode against photo‐corrosion is crucial for developing CuO‐based PEC cells. This study demonstrates a stable and efficient photocathode through the introduction of graphene into CuO film (CuO:G). The CuO:G composite electrodes are prepared using graphene‐incorporated CuO sol–gel solution via spin‐coating techniques. The graphene is modified with two different types of functional groups, such as amine (?NH_(2)) and carboxylic acid (?COOH). The ?COOH‐functionalized graphene incorporation into CuO photocathode exhibits better stability and also improves the photocurrent generation compare to control CuO electrode. In addition, ?COOH‐functionalized graphene reduces the conversion of CuO phase into cuprous oxide (Cu_(2)O) during photo‐electrochemical reaction due to effective charge transfer and leads to a more stable photocathode. The reduction of CuO to Cu_(2)O phase is significantly lesser in CuO:G‐COOH as compared to CuO and CuO:G‐NH_(2)photocathodes. The photocatalytic degradation of methylene blue (MB) by CuO, CuO:G‐NH_(2)and CuO:G‐COOH is also investigated. By integrating CuO:G‐COOH photocathode with a sol–gel‐deposited TiO_(2)protecting layer and Au–Pd nanostructure, stable and efficient photocathode are developed for solar hydrogen generation. Graphene‐incorporated cupric oxide (CuO:G) is a stable and efficient photocathode. The CuO:G electrodes are prepared using sol–gel solution via spin‐coating. The –COOH‐functionalized graphene reduces CuO phase conversion into cuprous oxide (Cu_(2)O) during photo‐electrochemical reaction and leads to a more stable photocathode for solar hydrogen generation. The CuO:G electrodes are also efficient for the dye degradation.
机译:氧化铜(CUO)是作为可见光电化学(PEC)水分裂的光电阴极作为光电阴极的候选候选者。然而,CuO光电阴极对光腐蚀的稳定性对于显影基于CuO的PEC细胞至关重要。本研究通过将石墨烯引入CuO膜(CuO:G)来证明稳定且高效的光电阴极。 CUO:G复合电极通过旋涂技术使用石墨烯掺入的CuO溶胶 - 凝胶溶液制备。将石墨烯用两种不同类型的官能团进行修饰,例如胺(αnH_(2))和羧酸(αCOOH)。将官能化石墨烯掺入CuO光电阴极上表现出更好的稳定性,并且还改善了对控制CuO电极的光电流产生。另外,COOH官能化石墨烯由于有效电荷转移而在光电化学反应期间将CUO相转化为CUO相转化为氧化酯(CU_(2)O),并导致更稳定的光电阴极。与CuO和CuO:G-NH_(2)光电量相比,CuO至Cu_(2)O相的CuO至Cu_(2)O相的减少显着小。 CuO,CuO:G-NH_(2)和CuO:G-COOH的光催化降解亚甲基蓝(MB)的光催化降解。通过将CUO:G-CoOH光电阴极与溶胶 - 凝胶沉积的TiO_(2)保护层和Au-Pd纳米结构进行整合,为太阳能发电开发了稳定和有效的光电阴极。 Graphene掺入的铜氧化物(CuO:G)是稳定且有效的光电阴极。 CuO:G电极通过旋涂使用溶胶 - 凝胶溶液制备。 -COOH-官能化石墨烯在光电化学反应期间将CUO相转化变为CUO氧化物(CU_(2)O),并导致太阳能氢气的更稳定的光电阴极。 CUO:G电极也有效地用于染料降解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号