首页> 外文期刊>Geoscience frontiers >Petrological geodynamics of mantle melting III. AlphaMELTS + multiphase flow: The effect of water
【24h】

Petrological geodynamics of mantle melting III. AlphaMELTS + multiphase flow: The effect of water

机译:地幔熔融III的岩石地球力学。 alphamelts +多相流:水的效果

获取原文
       

摘要

The influence of water is evaluated in this last contribution of a series aiming to study the petrological and dynamic evolution of mantle melting. Water is considered to be either a chemical component in the melt or solid assemblage but it can also be present as a pure water phase in a oversaturated environment. A three-phase-flow model was developed for this purpose.Only a limited set of conditions has been applied to the 1-D upwelling mantle column. A range of fixed temperatures (1150–1450 °C) and water contents in the solid mantle (0, 0.02 wt.%, 0.2??wt.%) have been imposed at the entry point (120??km deep) for the two melting models introduced in the previous installments, dynamic equilibrium melting (DEM) and dynamic fractional melting (DFM) model.As expected, for a given temperature at the base of the mantle column, the depth of the first melt formation increases with higher water content in the mantle. After the first melt is created, very negligible amount of melt is formed over a certain depth interval which approximately ends at the depth where the first melting of the dry mantle would take place. However melt is present as a dynamic phase thorough the entire region regardless whether the DEM or DFM model has been applied.Under a quasi-steady state regime, the melt and residual mantle compositions vary significantly over depth, depending on the conditions imposed to the model (DEM, DFM, bottom temperature and water content). Several distinctions can be made at the extraction point (top of the mantle column??=??15??km deep). For DEM and DFM models at this lowest depth, the most influential factor affecting the melt composition after the quasi-steady state condition has been reached is the temperature at the base of the column. In general, for a high temperature model, the input water in the mantle does not seem to play a significant role on the bulk composition of the melt (except for the water content in melt). But at low temperature water does have some noticeable influence on the variation of some chemical components in melt (SiO2, Fe2O3, CaO, Na2O at T??=??1250 °C or lower). A similar conclusion can be made also for the residual mantle composition. The presence of a dynamic free water phase is detected only in absence of melt or in coexistence with a melt phase when the mantle is relatively cold (bottom temperature ≤1250 °C) and the input water content at the base of the model is relatively high (0.2??wt.%).Complete output data for several numerical simulations and six animations illustrating various melting models are available following the instructions in the supplementary material.Graphical abstractDownload : Download high-res image (571KB)Download : Download full-size image
机译:在旨在研究地幔熔化的思科和动态演化的旨在研究思路的最后一项贡献中,水的影响是评估的。水被认为是熔体或固体组合中的化学成分,但它也可以作为纯水相中存在于过饱和环境中。为此目的开发了一种三相流模型。将有限的条件集应用于1-D升高的地幔柱。在切口点(120 km深)处施加一系列固定温度(1150-1450℃)和水含量(0,0.02重量%,0.2μl.%)在先前的两台分路中引入的两种熔化模型,动态平衡熔化(DEM)和动态分数熔化(DFM)模型。对于在地幔柱的底部的给定温度下,第一熔体形成的深度随着更高的水而增加内容在地幔中。在创造第一熔体之后,在一定深度间隔内形成非常可忽略的熔体量,该熔体在近似在干燥地幔的第一熔化的深度处近似结束。然而,熔体作为动态阶段彻底存在整个区域,而不管是否已经应用了DEM或DFM模型。在准稳态状态下,熔体和残留的搭腔组合物的深度显着变化,这取决于对模型的条件(DEM,DFM,底部温度和含水量)。可以在提取点(地幔柱的顶部= =Δω1m)进行几个区别。对于在这种最低深度的DEM和DFM模型中,达到了准稳态条件后,影响熔融组合物的最有影响力的因素是柱底部的温度。通常,对于高温模型,地幔中的输入水似乎对熔体的块状组合物(除了熔体中的水含量除外)并不重要。但在低温下,水确实对熔体中的一些化学成分的变化有一些明显的影响(SiO 2,Fe 2 O 3,CaO,Na 2 O在T→1250℃或更低)中的变化。可以为残留的地幔组合物进行类似的结论。仅在搭式相对寒冷(底部温度≤1250℃)时,仅在没有熔体或与熔体相的共存时检测动态自由水相的存在,并且模型基部的输入水含量相对较高(0.2 ?? wt。%)。若干数值模拟的完整输出数据和说明补充材料中的指令的说明提供了六个动画。图表抽象:下载高分辨率图像(571KB)下载:下载全尺寸图像

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号