...
首页> 外文期刊>e-Polymers >Pilot-scale production of polylactic acid nanofibers by melt electrospinning
【24h】

Pilot-scale production of polylactic acid nanofibers by melt electrospinning

机译:通过熔体静电纺丝试验型聚酸纳米纤维的生产

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Melt electrospinning has been used to manufacture fibers with diameters in the low micrometer range, but the production of submicrometer fibers has proven more challenging. In this study, we investigated the feasibility of fabricating polylactic acid nanofibers using polymer grades with the increasing melt flow rates (15–85?g/10?min at 210°C) by melt electrospinning with a 600-nozzle pilot-scale device featuring an integrated climate control system realized as a glass chamber around the spinneret. Previous experiments using this device without appropriate climate control produced fibers exceeding 1?μm in diameter because the drawing of fibers was inhibited by the rapid cooling of the polymer melt. The integrated glass chamber created a temperature gradient exceeding the glass transition temperature of the polymer, which enhanced the drawing of fibers below the spinneret. An average fiber diameter of 810?nm was achieved using Ingeo Biopolymer 6252, and the finest individual fiber (420?nm in diameter) was produced at a spin pump speed of 5?rpm and a spinneret set temperature of 230°C. We have therefore demonstrated the innovative performance of our pilot-scale melt-electrospinning device, which bridges the gap between laboratory-scale and pilot-scale manufacturing and achieves fiber diameters comparable to those produced by conventional solution electrospinning.
机译:熔融静电纺丝已被用于制造直径在低千分尺范围内的纤维,但潜膜纤维的生产已经证明了更具有挑战性。在这项研究中,我们研究了通过使用600-喷嘴先导级装置的熔体静电,使用聚合物等级使用聚合物等级使用聚合物等级制造聚乳酸纳米纤维的可行性(在210℃下)综合气候控制系统以喷丝头周围的玻璃室实现。先前使用该装置的实验,没有适当的气候控制产生的纤维直径超过1?μm的纤维,因为通过聚合物熔体的快速冷却抑制了纤维的图纸。集成玻璃室产生超过聚合物的玻璃化转变温度的温度梯度,这增强了喷丝头以下的纤维图。使用Ingeo生物聚合物6252实现平均纤维直径为810℃,并且在5Ω·rpm的旋转泵速度和喷丝头设定温度为230℃的喷丝泵速度,最优选的单独纤维(直径为420·nm)。因此,我们已经证明了我们的试验型熔融型静电纺丝装置的创新性能,该装置桥接了实验室规模和先导制造之间的差距,并实现了与常规溶液静电纺丝产生的纤维直径相当的纤维直径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号