...
首页> 外文期刊>Integrating Materials and Manufacturing Innovation >ICME Framework for Simulation of Microstructure and Property Evolution During Gas Metal Arc Welding in DP980 Steel
【24h】

ICME Framework for Simulation of Microstructure and Property Evolution During Gas Metal Arc Welding in DP980 Steel

机译:DP980钢气金属弧焊过程中微观结构和物业演化仿真框架

获取原文
           

摘要

An integrated computational materials engineering (ICME)-based workflow was adopted for the study of microstructure and property evolution at the heat-affected zone (HAZ) of gas metal arc-welded DP980 steel. The macroscale simulation of the welding process was performed with finite element method (FEM) implemented in Simufact Welding~(?)software and was experimentally validated. The time–temperature profile at HAZ obtained from FEM simulation was physically simulated using Gleeble 3800~(?)thermo-mechanical simulator with a dilatometer attachment. The resulting phase transformations and microstructure were studied experimentally. The austenite-to-ferrite and austenite-to-bainite transformations during cooling at HAZ were simulated using the Johnson–Mehl–Avrami–Kolmogorov (JMAK) equation implemented in JMatPro~(?)software and with phase-field modeling implemented in Micress~(?)software. The phase fractions and the phase transformation kinetics simulated by phase-field method agreed well with experiments. A single scaling factor introduced in JMatPro~(?)software minimized the deviation between calculations and experiments. Asymptotic homogenization implemented in Homat~(?)software was used to calculate the effective macroscale thermo-elastic properties from the phase-field simulated microstructure. FEM-based virtual uniaxial tensile test with Abaqus~(?)software was used to calculate the effective macroscale flow curves from the phase-field simulated microstructure. The flow curve from virtual test simulation showed good agreement with the flow curve obtained with tensile test in Gleeble~(?). An ICME-based vertical integration workflow in two stages is proposed. With this ICME workflow, effective properties at the macroscale could be obtained by taking microstructure morphology and orientation into consideration.
机译:采用了一种集成的计算材料工程(ICME)的工作流程,用于研究气体金属弧焊DP980钢的热影响区(HAZ)的微观结构和物业演化。通过在Simuffact焊接〜(?)软件中实现的有限元方法(FEM)进行焊接过程的Macroscale模拟,并进行了实验验证。使用Gleeble 3800〜(α)热机械模拟器具有膨胀表附件的热性模拟中获得的HAZ处的时间温度分布。实验研究所得到的相变和微观结构。使用JMATPRO〜(?)软件中实现的Johnson-Mehl-Avrami-Kolmogorov(JMAK)方程来模拟HAZ中的奥氏体 - 到铁氧体和奥氏体对贝氏体转换。在射频〜中实现了相位场建模(?)软件。通过相域法模拟的相级分和相变动力学与实验相同。在JMATPRO〜(?)软件中引入的单个缩放因子最小化计算和实验之间的偏差。在Homat〜(?)软件中实施的渐近均匀化用于从相场模拟微观结构计算有效的宏观热弹性性能。使用ABAQUS〜(?)软件的基于FEM的虚拟单轴拉伸试验来计算来自相场模拟微结构的有效宏观流曲线。虚拟测试仿真的流动曲线显示出与GLELEBLE中的拉伸试验获得的流动曲线吻合良好的一致性〜(?)。提出了两个阶段的基于ICME的垂直积分工作流程。通过这种ICME工作流程,通过考虑微观结构形态和方向可以获得宏观上的有效性质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号