首页> 外文期刊>Atmospheric Measurement Techniques >Bayesian atmospheric tomography for detection and quantification of methane emissions: application to data from the 2015 Ginninderra release experiment
【24h】

Bayesian atmospheric tomography for detection and quantification of methane emissions: application to data from the 2015 Ginninderra release experiment

机译:贝叶斯大气断层扫描,用于甲烷排放的检测和量化:2015年Ginninderra释放实验中的数据应用

获取原文
           

摘要

Detection and quantification of greenhouse-gas emissions is important for both compliance and environment conservation. However, despite several decades of active research, it remains predominantly an open problem, largely due to model errors and assumptions that appear at each stage of the inversion processing chain. In 2015, a controlled-release experiment headed by Geoscience Australia was carried out at the Ginninderra Controlled Release Facility, and a variety of instruments and methods were employed for quantifying the release rates of methane and carbon dioxide from a point source. This paper proposes a fully Bayesian approach to atmospheric tomography for inferring the methane emission rate of this point source using data collected during the experiment from both point- and path-sampling instruments. The Bayesian framework is designed to account for uncertainty in the parameterisations of measurements, the meteorological data, and the atmospheric model itself when performing inversion using Markov chain Monte Carlo (MCMC). We apply our framework to all instrument groups using measurements from two release-rate periods. We show that the inversion framework is robust to instrument type and meteorological conditions. From all the inversions we conducted across the different instrument groups and release-rate periods, our worst-case median emission rate estimate was within 36 % of the true emission rate. Further, in the worst case, the closest limit of the 95 % credible interval to the true emission rate was within 11 % of this true value.
机译:温室气体排放的检测和定量对于遵守性和环境保护都很重要。然而,尽管有几十年的积极研究,但它仍然是一个开放的问题,主要是由于反转处理链的每个阶段出现的模型误差和假设。 2015年,由地球科学澳大利亚领导的控释实验在Ginninderra控制释放设施中进行,采用各种仪器和方法来定量来自点源的甲烷和二氧化碳的释放速率。本文提出了一种充分的贝叶斯接近,用于使用从两点和路径采样仪器中的实验期间收集的数据推断出该点源的甲烷排放率。贝叶斯框架旨在考虑使用Markov链蒙特卡罗(MCMC)进行测量,气象数据和大气模型本身的参数,气象数据和大气模型本身的不确定性。我们使用两个释放速率期间使用测量来将框架应用于所有仪器组。我们表明反转框架对仪器类型和气象条件具有鲁棒性。从我们跨越不同的仪器组和释放率期间进行的所有反转,我们最糟糕的中位数排放率估计量在真实排放率的36%范围内。此外,在最坏的情况下,95%可信间隔的最近限制为真实排放率在这个真实值的11%范围内。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号