首页> 外文期刊>Annales Geophysicae >Observing geometry effects on a Global Navigation Satellite System (GNSS)-based water vapor tomography solved by least squares and by compressive sensing
【24h】

Observing geometry effects on a Global Navigation Satellite System (GNSS)-based water vapor tomography solved by least squares and by compressive sensing

机译:通过最小二乘和压缩感测来观察全球导航卫星系统(GNSS)的几何效应基于最小二乘和压缩传感的基于水蒸汽断层扫描

获取原文
           

摘要

In this work, the effect of the observing geometry on the tomographic reconstruction quality of both a regularized least squares (LSQ) approach and a compressive sensing (CS) approach for water vapor tomography is compared based on synthetic Global Navigation Satellite System (GNSS) slant wet delay (SWD) estimates. In this context, the term “observing geometry” mainly refers to the number of GNSS sites situated within a specific study area subdivided into a certain number of volumetric pixels (voxels) and to the number of signal directions available at each GNSS site. The novelties of this research are (1)?the comparison of the observing geometry's effects on the tomographic reconstruction accuracy when using LSQ or CS for the solution of the tomographic system and (2)?the investigation of the effect of the signal directions' variability on the tomographic reconstruction. The tomographic reconstruction is performed based on synthetic SWD data sets generated, for many samples of various observing geometry settings, based on wet refractivity information from the Weather Research and Forecasting (WRF) model. The validation of the achieved results focuses on a comparison of the refractivity estimates with the input WRF refractivities. The results show that the recommendation of Champollion et?al. (2004) to discretize the analyzed study area into voxels with horizontal sizes comparable to the mean GNSS intersite distance represents a good rule of thumb for both LSQ- and CS-based tomography solutions. In addition, this research shows that CS needs a variety of at least 15 signal directions per site in order to estimate the refractivity field more accurately and more precisely than LSQ. Therefore, the use of CS is particularly recommended for water vapor tomography applications for which a high number of multi-GNSS SWD estimates are available.
机译:在这项工作中,基于合成的全球导航卫星系统(GNSS)倾斜,比较了观察几何学对正规化最小二乘(LSQ)方法和用于水蒸汽断层扫描的压缩感应(CS)方法的断层重建质量的影响。湿延迟(SWD)估计。在这种情况下,术语“观察几何形状”主要是指位于特定研究区域内的GNSS站点的数量被细分为一定数量的体积像素(体素)以及每个GNSS站点上可用的信号方向的数量。这项研究的新奇是(1)?在使用LSQ或CS的断层系统解决方案时观察几何对断层重建精度的影响的比较和(2)?信号方向变异性效果的调查论断层切断重建。基于来自来自天气研究和预测(WRF)模型的湿折射信息,基于生成的合成SWD数据集进行断层重建。所达到的结果的验证侧重于对输入WRF折射的折射率估计的比较。结果表明,Champollion等的建议。 (2004)以将分析的研究区分离成具有与平均GNSS距离相当的水平尺寸的体素,代表了基于LSQ和CS的断层扫描解决方案的纯粹规则。此外,该研究表明,CS每个站点需要多个至少15个信号方向,以便更准确,更精确地估计比LSQ更精确且更精确。因此,特别推荐使用CS的水蒸汽断层扫描应用,其中有大量的多GNSS SWD估计可用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号