...
首页> 外文期刊>AIP Advances >Wind load prediction on single tree with integrated approach of L-system fractal model, wind tunnel, and tree aerodynamic simulation
【24h】

Wind load prediction on single tree with integrated approach of L-system fractal model, wind tunnel, and tree aerodynamic simulation

机译:L-System分形模型,风隧道和树空气动力学模拟的综合方法风力负荷预测

获取原文
           

摘要

In this work, we adopt the integration of the L-system fractal tree generation, 3D printed wind tunnel modeling, and computational fluid dynamics (CFD) simulation approach to model the wind effect on a single tree. We compare the agreement between CFD simulations and wind tunnel measurements of rigid branched structures resembling trees. First, fractal tree mesh models based on species growth and branching patterns are developed to represent tree species for wind–tree modeling. Subsequently, a scaled-down fractal tree is generated with 3D-printing and subjected to tunnel testing with load cell and particle image velocimetry measurement data under the wind speed of 10 m/s and 15 m/s. Finally, CFD based on Reynolds-Average Navier–Stokes (RANS) simulation with a full closure model and Large Eddy Simulation (LES) using appropriate momentum sink and turbulence source terms for the volumetric tree is carried out. We use both the volume-average porous media and the volume-splitting discretized zones (split number 10 × 10 × 10) to reproduce the momentum sink effect in the numerical simulation. Three tree species, namely, Peltophorum pterocarpum (yellow flame), Khaya senegalensis (African mahogany), and Hopea odorata (ironwood), are tested, and a reasonable agreement of drag force prediction and velocity profiles is obtained when comparing the CFD simulation results with wind tunnel data. The RANS modeled drag force results exhibit 20% of over-prediction, while the normalized velocity profiles display a good match of velocity decay at the tree leeward sides. On the other hand, LES produces much better results with only 3% discrepancy with the experimental results. A comparison of experimental results among the tree species is also carried out. Due to the actual random wind direction, tree slenderness representation, and structural flexibility issues, the current methodology still has the limitation for validation with urban on-site measurement. Nonetheless, this integrated approach is the first step in establishing modeling tool applicability to examine the effect of the forest structure and composition on wind loads.
机译:在这项工作中,我们采用L系统分形树生成,3D印刷风洞建模和计算流体动力学(CFD)仿真方法的集成来模拟一棵树的风效应。我们比较类似于树木的刚性分支结构的CFD模拟与风洞测量之间的协议。首先,开发了基于物种生长和分支模式的分形树网模型来代表风雨造型的树种。随后,使用3D打印产生缩小的分形树,并在风速下具有10m / s和15米/秒的风速下的负载电池和粒子图像速度测量数据进行隧道测试。最后,基于Reynolds-普通的Navier-Stokes(RAN)模拟的CFD采用完全闭合模型和使用适当的动量沉降和湍流源的大涡模拟(LES)进行体积树和湍流源。我们使用体积平均多孔介质和体积分离的离散区域(分割数10×10×10)来再现数值模拟中的动量沉降效果。测试了三种树种,即Petophorum Pterocarpum(黄色火焰),Khaya senegalensis(非洲桃花心木)和Hopea Odorata(Ironwood),并且在比较CFD仿真结果时获得了拖曳力预测和速度谱的合理达成风隧道数据。 RAN模型拖曳力结果表现出20%的过度预测,而标准化的速度剖面在树侧面侧面显示速度衰减的良好匹配。另一方面,LES产生了更好的结果,只有3%的差异,实验结果。还进行了树种中实验结果的比较。由于实际随机风向,树长表示和结构灵活性问题,目前的方法仍然具有与城市现场测量验证的限制。尽管如此,这种综合方法是建立建模工具适用性的第一步,以检查森林结构和组成对风荷载作用的效果。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号