...
首页> 外文期刊>AIP Advances >Large-area in plane molecular junctions by electrografting in 10 nm metallic nanotrenches
【24h】

Large-area in plane molecular junctions by electrografting in 10 nm metallic nanotrenches

机译:通过在10nm金属纳米体中的电解在平面分子连接的大面积

获取原文
   

获取外文期刊封面封底 >>

       

摘要

A key issue to push molecular devices toward a new range of applications is the ability to master large scale integration while preserving the device’s functionality. Furthermore, providing extra tunability of the device by external parameters, such as gating in a transistor-like configuration, is highly suited for molecular electronics. Large area molecular junctions in crossbar geometry have demonstrated high yields and compatible and compatible fabrication with Complementary Metal Oxide Semiconductor (CMOS) technology. However, such a device’s geometry favors diffusion of metallic atoms in the molecular layer and gives a very limited access to perform electrical or optical gating on molecules. In this work, we propose a new molecular junction architecture going behind these limits. We report a robust approach for the fabrication of molecular junctions based on the electrografting of a nanometer-thick molecular layer in high aspect ratio metallic nanotrenches. Nanotrenches are obtained by edge-mediated shadow deposition, resulting in laterally aligned electrodes with a 10.3 nm ± 3.3 nm average spacing along a 20 μ m length. An in-solution electroreduction of diazonium salts is subsequently performed to fill the nanotrenches by a thin oligomeric layer of anthraquinone molecules. Electronic transport measurements performed at room temperature reveal the ability to produce stable molecular devices. Such a new junction’s engineering offers the key advantages of high fabrication yield, great amenability for compact assembly, and reduced leakage current. The proposed architecture opens interesting perspectives to investigate fundamental and applied questions in molecular electronics, in which coupling of the molecules with external stimuli is required.
机译:推送分子设备朝向新的应用范围的关键问题是能够掌握大规模集成的能力,同时保留设备的功能。此外,通过外部参数提供装置的额外可调性,例如以晶体管状配置的栅极,非常适合分子电子器件。横杆几何中的大面积分子结具有高产率和兼容的和兼容的制造,互补金属氧化物半导体(CMOS)技术。然而,这种装置的几何形状有利于金属原子在分子层中的扩散,并给出了在分子上执行电气或光栅的获得非常有限的访问。在这项工作中,我们提出了一种新的分子交叉路口架构落后于这些限制。我们报告了一种基于高纵横比金属纳米体中的纳米厚的分子层的电解制造分子结的稳健方法。通过边缘介导的荫的荫沉积获得纳米形状,导致横向对准的电极,沿20μm长度为10.3nm±3.3nm的平均间隔。随后进行重氮盐的溶液电极,以通过蒽醌分子的薄的低聚体层填充纳米体。在室温下进行的电子传输测量显示出生产稳定的分子装置的能力。这种新的交叉路口的工程提供了高制造产量,对紧凑型组件的巨大可扫描性的关键优势,以及降低漏电流。拟议的架构开启有趣的观点来调查分子电子中的基本和应用的问题,其中需要具有外部刺激的分子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号