首页> 外文期刊>Crystals >Thickness-Dependent Strain Rate Sensitivity of Nanolayers via the Nanoindentation Technique
【24h】

Thickness-Dependent Strain Rate Sensitivity of Nanolayers via the Nanoindentation Technique

机译:通过纳米狭窄技术的纳米层的厚度依赖性应变速率灵敏度

获取原文
       

摘要

The strain rate sensitivity (SRS) and dislocation activation volume are two inter-related material properties for understanding thermally-activated plastic deformation, such as creep. For face-centered-cubic metals, SRS normally increases with decreasing grain size, whereas the opposite holds for body-center-cubic metals. However, these findings are applicable to metals with average grain sizes greater than tens of nanometers. Recent studies on mechanical behaviors presented distinct deformation mechanisms in multilayers with individual layer thickness of 20 nanometers or less. It is necessary to estimate the SRS and plastic deformation mechanisms in this regime. Here, we review a new nanoindentation test method that renders reliable hardness measurement insensitive to thermal drift, and its application on SRS of Cu/amorphous-CuNb nanolayers. The new technique is applied to Cu films and returns expected SRS values when compared to conventional tensile test results. The SRS of Cu/amorphous-CuNb nanolayers demonstrates two distinct deformation mechanisms depending on layer thickness: dislocation pileup-dominated and interface-mediated deformation mechanisms.
机译:应变速率灵敏度(SRS)和位错激活体积是两个相关的相互相关的材料特性,用于理解热激活的塑性变形,例如蠕变。对于面为立立方金属,Srs通常随着晶粒尺寸的降低而增加,而相反的身体中心立方金属保持。然而,这些发现适用于具有大于数十纳米的平均粒度的金属。最近关于机械行为的研究呈现多层的多层变形机制,各个层厚度为20纳米或更小。有必要估计在该制度中的SRS和塑性变形机制。在这里,我们审查了一种新的纳米凸缘试验方法,使得对热漂移不敏感的可靠硬度测量,其在Cu /非晶-CUNB纳米层的SR上的应用。与传统拉伸试验结果相比,新技术应用于Cu膜并返回预期的SRS值。 Cu / Amorphous-CUNB Nanolayers的SRS根据层厚度展示了两个不同的变形机制:位错堆叠主导和界面介导的变形机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号