...
首页> 外文期刊>ACS Omega >SSSCPreds: Deep Neural Network-Based Software for the Prediction of Conformational Variability and Application to SARS-CoV-2
【24h】

SSSCPreds: Deep Neural Network-Based Software for the Prediction of Conformational Variability and Application to SARS-CoV-2

机译:SSSCPREDS:基于深度神经网络的软件,用于预测构象变异性和应用于SARS-COV-2

获取原文
           

摘要

Amino acid mutations that improve protein stability and rigidity can accompany increases in binding affinity. Therefore, conserved amino acids located on a protein surface may be successfully targeted by antibodies. The quantitative deep mutational scanning approach is an excellent technique to understand viral evolution, and the obtained data can be utilized to develop a vaccine. However, the application of the approach to all of the proteins in general is difficult in terms of cost. To address this need, we report the construction of a deep neural network-based program for sequence-based prediction of supersecondary structure codes (SSSCs), called SSSCPrediction (SSSCPred). Further, to predict conformational flexibility or rigidity in proteins, a comparison program called SSSCPreds that consists of three deep neural network-based prediction systems (SSSCPred, SSSCPred100, and SSSCPred200) has also been developed. Using our algorithms we calculated here shows the degree of flexibility for the receptor-binding motif of SARS-CoV-2 spike protein and the rigidity of the unique motif (SSSC: SSSHSSHHHH) at the S2 subunit and has a value independent of the X-ray and Cryo-EM structures. The fact that the sequence flexibility/rigidity map of SARS-CoV-2 RBD resembles the sequence-to-phenotype maps of ACE2-binding affinity and expression, which were experimentally obtained by deep mutational scanning, suggests that the identical SSSC sequences among the ones predicted by three deep neural network-based systems correlate well with the sequences with both lower ACE2-binding affinity and lower expression. The combined analysis of predicted and observed SSSCs with keyword-tagged datasets would be helpful in understanding the structural correlation to the examined system.
机译:改善蛋白质稳定性和刚性的氨基酸突变可以伴随着结合亲和力的增加。因此,位于蛋白质表面上的保守氨基酸可以通过抗体成功靶向。定量深度突变扫描方法是了解病毒演化的优异技术,并且可以利用所获得的数据来开发疫苗。然而,在成本方面,难以应用于所有蛋白质的方法。为了解决这一需求,我们报告了基于神经网络的基于序列的基于结构代码(SSSCS)的基于序列的基于神经网络的基于序列的程序的构建,称为SSCPrediction(SSSCPRED)。此外,为了预测蛋白质中的构象灵活性或刚性,还开发了由三个深神经网络的预测系统(SSSCPRED,SSSCPRED100和SSSCPRED200)组成的SSSCPRED的比较方案。使用我们在此计算的算法显示SARS-COV-2穗蛋白的受体结合基序和S2亚基(SSSC:SSSHSSHHHH)的刚性的灵活性,并且具有与X-无关的值射线和冷冻组织结构。 SARS-COV-2 RBD的序列柔韧性/刚度图类似于通过深静脉扫描实验获得的ACE2结合亲和力和表达的序列到表型映射,表明该术中相同的SSSC序列由三个基于神经网络的系统预测,序列与序列相结合,均具有较低的ACE2结合亲和力和下表达。具有关键字标记数据集的预测和观察SSCS的组合分析将有助于理解与所检查系统的结构相关性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号