首页> 外文期刊>ACS Omega >Numerical Investigations on Methane–Air Nanosecond Pulsed Dielectric Barrier Discharge Plasma-Assisted Combustion
【24h】

Numerical Investigations on Methane–Air Nanosecond Pulsed Dielectric Barrier Discharge Plasma-Assisted Combustion

机译:甲烷 - 空气纳秒脉冲介质屏障放电等离子体辅助燃烧的数值研究

获取原文
获取外文期刊封面目录资料

摘要

Plasma-assisted combustion is a promising approach to achieve fast ignition and highly efficient combustion. In this work, methane–air nanosecond pulsed dielectric barrier discharge plasma-assisted combustion is numerically investigated by combining a homemade plasma model with the combustion model of software CHEMKIN-PRO. Effects of varying applied voltage amplitudes on the characteristic parameters of the plasma-assisted planar shear flow combustion as well as the reaction pathway maps of not only the nanosecond pulsed dielectric barrier discharge plasma but also the combustions without and with plasma assistance are systematically illustrated and analyzed. The simulation results indicate that under the combined action of increasing electric field intensity and increasing charged particle densities, the peak value of the discharge current density increases, and the peak time of the discharge current density is brought forward with the increase of the applied voltage amplitude. The temperature reaches its peak value earlier in the methane–air combustion with plasma assistance than without plasma assistance. The maximum temperature reduces to around 1900 K when the applied voltage amplitude is higher than 11 kV. There are emerging pathways to generate hydrocarbons C_(2)H_(4) and C_(2)H_(2) in the plasma-assisted combustion, the reactions of CH_(4) on CH and C_(2)H on H_(2), respectively. The reactions involving active species such as H play a significant role in the plasma-assisted combustion, which causes an obvious decrease in the densities of these active species with plasma assistance.
机译:等离子体辅助燃烧是实现快速点火和高效燃烧的有希望的方法。在这项工作中,通过将自制等离子体模型与软件Chemkin-Pro的燃烧模型组合,用甲烷 - 空气纳秒脉冲介质放电放电放电等离子体辅助燃烧。改变施加电压幅度对等离子体辅助平面剪切流动燃烧的特性参数的影响以及不仅是纳秒脉冲介质阻挡排出等离子体的反应途径图,而且还系统地示出并分析了燃烧而没有等离子体辅助。仿真结果表明,在增加电场强度的组合作用和增加带电粒子密度的组合作用下,放电电流密度的峰值增加,并且随着施加的电压幅度的增加提出了放电电流密度的峰值时间。温度在甲烷 - 空气燃烧中达到其峰值,等离子体辅助比没有等离子体辅助。当施加的电压幅度高于11 kV时,最大温度降至约1900 k。在等离子体辅助燃烧中产生烃C_(2)H_(4)和C_(2)H_(2)的碳氢化合物C_(2)H_(2),CH_(4)对CH和C_(2)H的反应(2 ), 分别。涉及活性物种如H在等离子体辅助燃烧中发挥重要作用,这导致这些活性物种的密度明显降低了等离子体辅助。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号