...
首页> 外文期刊>ACS Omega >PEGylation of Polyethylenimine Lowers Acute Toxicity while Retaining Anti-Biofilm and β-Lactam Potentiation Properties against Antibiotic-Resistant Pathogens
【24h】

PEGylation of Polyethylenimine Lowers Acute Toxicity while Retaining Anti-Biofilm and β-Lactam Potentiation Properties against Antibiotic-Resistant Pathogens

机译:聚乙烯亚胺的聚乙二醇化降低了急性毒性,同时保留抗生物膜和β-内酰胺增强性能免受抗生素抗性病原体

获取原文

摘要

Bacterial biofilms, often impenetrable to antibiotic medications, are a leading cause of poor wound healing. The prognosis is worse for wounds with biofilms of antimicrobial-resistant (AMR) bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant S. epidermidis (MRSE), and multi-drug resistant Pseudomonas aeruginosa (MDR-PA). Resistance hinders initial treatment of standard-of-care antibiotics. The persistence of MRSA, MRSE, and/or MDR-PA often allows acute infections to become chronic wound infections. The water-soluble hydrophilic properties of low-molecular-weight (600 Da) branched polyethylenimine (600 Da BPEI) enable easy drug delivery to directly attack AMR and biofilms in the wound environment as a topical agent for wound treatment. To mitigate toxicity issues, we have modified 600 Da BPEI with polyethylene glycol (PEG) in a straightforward one-step reaction. The PEG–BPEI molecules disable β-lactam resistance in MRSA, MRSE, and MDR-PA while also having the ability to dissolve established biofilms. PEG-BPEI accomplishes these tasks independently, resulting in a multifunction potentiation agent. We envision wound treatment with antibiotics given topically, orally, or intravenously in which external application of PEG–BPEIs disables biofilms and resistance mechanisms. In the absence of a robust pipeline of new drugs, existing drugs and regimens must be re-evaluated as combination(s) with potentiators. The PEGylation of 600 Da BPEI provides new opportunities to meet this goal with a single compound whose multifunction properties are retained while lowering acute toxicity.
机译:往往是抗生素药物的细菌生物膜,是伤口愈合不良的主要原因。预后对抗菌抗菌(AMR)细菌的生物膜的伤口更差,例如耐甲氧西林 - 金黄色葡萄球菌(MRSA),耐甲氧脲抗性。表皮(MRSE)和多药物抗性假单胞菌铜绿假单胞菌(MDR-PA)。抗性阻碍初始治疗护理标准抗生素。 MRSA,MRSE和/或MDR-PA的持续存在往往允许急性感染成为慢性伤口感染。低分子量(600Da)支链聚乙烯(600Da BPEI)的水溶性亲水性能使得易于药物递送,可直接攻击伤口环境中的AMR和生物膜作为伤口处理的局部剂。为了减轻毒性问题,我们在直接的一步反应中修饰了600 da bpei用聚乙二醇(PEG)。 PEG-BPEI分子在MRSA,MRSE和MDR-PA中禁用β-内酰胺抗性,同时还具有溶解建立的生物膜的能力。 PEG-BPEI独立完成这些任务,导致多功能促性剂。我们在局部,口服或静脉内设想用抗生素进行伤口处理,其中PEG-BPEIS的外部施用禁用生物膜和抗性机制。在没有强大的新药物管道的情况下,现有的药物和方案必须重新评估为具有增强剂的组合。 600 da bpei的PEG化提供了与其多功能性质保留的单个化合物相遇的新机会,同时降低急性毒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号