...
首页> 外文期刊>ACS Omega >Prediction of Nanofluid Temperature Inside the Cavity by Integration of Grid Partition Clustering Categorization of a Learning Structure with the Fuzzy System
【24h】

Prediction of Nanofluid Temperature Inside the Cavity by Integration of Grid Partition Clustering Categorization of a Learning Structure with the Fuzzy System

机译:用模糊系统集成栅格分区聚类分类对腔内纳米流体温度的预测

获取原文
           

摘要

In this study, a quadratic cavity is simulated using computational fluid dynamics (CFD). The simulated cavity includes nanofluids containing copper (Cu) nanoparticles. The L-shaped thermal element exists in this cavity to produce heat distribution along with the domain. Results such as fluid velocity distribution in two dimensions and the fluid temperature field were generated as CFD simulation results. These outputs were evaluated using an adaptive neuro-fuzzy inference system (ANFIS) for learning and then the prediction process. In the training process related to the ANFIS method, x coordinates, y coordinates, and fluid temperature are three inputs, and the fluid velocity in line with Y is the output. During the learning process, the data have been classified using a clustering method called grid clustering. In line with the attempt to rise ANFIS intelligence, the alterations in the number of input parameters and of membership structure have been analyzed. After reaching the highest level of intelligence, the fluid velocity nodes were predicted to be in line with y , especially cavity nodes, which were absent in CFD simulations. The simulation findings indicated that there is a good agreement between CFD and clustering approach, while the total simulation time for learning and prediction is shorter than the time needed for calculation using the CFD method.
机译:在该研究中,使用计算流体动力学(CFD)模拟二次腔。模拟腔包括含有铜(Cu)纳米颗粒的纳米流体。在该腔中存在L形热元件,以产生与域一起的热分布。作为CFD仿真结果产生了两个尺寸和流体温度场的流体速度分布的结果。使用自适应神经模糊推理系统(ANFIS)来评估这些输出,用于学习,然后是预测过程。在与ANFIS方法相关的训练过程中, x坐标,坐标和流体温度是三个输入,并且流体速度与 Y线是输出。在学习过程中,数据已经使用名为网格群集的群集方法进行分类。根据尝试升高ANFIS智能,已经分析了输入参数和隶属结构数量的改变。在达到最高智能级别之后,预计流体速度节点预计符合 y,尤其是腔节点,其在CFD模拟中不存在。仿真结果表明,CFD和聚类方法之间存在良好的一致性,而学习和预测的总仿真时间短于使用CFD方法计算的时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号