首页> 外文期刊>ACS Omega >Probing the Role of Imidazopyridine and Imidazophosphorine Scaffolds To Design Novel Proton Pump Inhibitor for H+,K+-ATPase: A DFT Study
【24h】

Probing the Role of Imidazopyridine and Imidazophosphorine Scaffolds To Design Novel Proton Pump Inhibitor for H+,K+-ATPase: A DFT Study

机译:探讨咪唑吡啶和咪唑磷磷骨架的作用为H +,K + -ATP酶设计新型质子泵抑制剂:DFT研究

获取原文
           

摘要

Clinically used proton pump inhibitors (PPIs) are not perfectly suitable for prolonged acid suppression because of the short plasma half-lives of 1–1.5 h. However, tenatoprazole, an imidazopyridine-type PPI, having a prolonged plasma half-life, is a promising replacement of the currently used PPIs. We have designed inhibitors that can possess imidazopyridine and imidazophosphorine units and can ease the formation of disulfide complex, which is one of the crucial steps toward the efficacy of PPIs. The M11L-SMDWater/6-31++G(d,p)//M062X/6-31++G(d,p) level of theory-calculated results demonstrated that the acid activation of the imidazopyridine PPIs is complex than that of benzimidazole-type PPIs because of the presence of additional nitrogen, which could be protonated. However, the proton transfer from protonated pyridine nitrogen (PyNH+) to benzimidazole nitrogen(3) (BzN(3)) is more energetically favorable than that of protonated benzimidazole nitrogen(4) (BzN(4)H+) to BzN3 and the BzN(3)H+ further converts to the acid-activated sulfenic acid. It is to mention here that the PyNH+ PPIs are more stable compared to BzN(4)H+ PPIs. Subsequently, the acid-activated sulfenic acid forms the disulfide complex with the cysteine amino acid residue to inhibit the gastric proton pump H+,K+-ATPase. The disulfide complex formation (TS4) is the rate-determining step of the gastric proton pump inhibition process. The density functional theory (DFT) calculations also reveal that the acid activation and disulfide complex formation of all of the PPIs are very similar to those of potent PPI omeprazole. The free-energy activation barrier for tenatoprazole is 47.0 kcal/mol with respect to the preceding intermediate sulfenic acid, and the disulfide complex is stable by 28.0 kcal/mol. The M11L-SMDWater/6-31++G(d,p) level of theory results reveal that the disulfide complex formation of the imidazophosphorine type of PPIs is marginally more favorable than that of the analogous imidazopyridine type of PPIs. The newly designed inhibitor-3 and inhibitor-5 possess the lowest activation free-energy barriers, i.e., 35.8 and 35.9 kcal/mol, respectively, in the rate-determining steps (TS4) and also achieve significant thermodynamic stability of the disulfide complex. Steered molecular dynamics simulations performed with representative tenatoprazole and inhibitor-5 corroborated the DFT results.
机译:由于1-1.5小时的短等离子体半衰期,临床使用的质子泵抑制剂(PPI)并不适合延长酸抑制。然而,替代替代吡啶型PPI具有延长的血浆半衰期,是目前使用的PPI的有望的更换。我们设计了可具有咪唑吡啶和咪唑胺单元的设计抑制剂,并且可以缓解三硫化物复合物的形成,这是朝PPI效果的关键步骤之一。 M11L-SMDWATER / 6-31 ++ G(d,p)// m062x / 6-31 ++ g(d,p)级理论计算结果表明,咪唑吡啶ppis的酸活化是复杂的由于存在额外的氮气,苯并咪唑型PPI,其可以质子化。然而,来自质子化吡啶氮(PynH +)的质子转移至苯并咪唑氮(3)(BZN(3))比质子化苯并咪唑氮(4)(BZN(4)H +)与BZN3和BZN( 3)H +进一步转化为酸活化的硫酸。在此提到与BZN(4)H + PPI相比,PynH + PPI更稳定。随后,酸活化的硫酸与半胱氨酸氨基酸残基形成二硫化物复合物,以抑制胃质子泵H +,K + -ATP酶。二硫化物复合物形成(TS4)是胃质子泵抑制过程的速率确定步骤。密度函数理论(DFT)计算还表明,所有PPI的酸活化和二硫化物复合物形成与强效PPI奥美拉唑的酸性络合物形成非常相似。基替唑的自由能活化屏障相对于前述中间硫酸为47.0kcal / mol,二硫化物复合物稳定28.0kcal / mol。 M11L-SMDWATER / 6-31 ++ G(D,P)理论结果表明,二硫化物复合物形成的咪唑磷磷类型PPIS比类似于类似咪唑吡啶型PPI的略微良好。新设计的抑制剂-3和抑制剂-5分别具有最低的活化自由能屏障,即35.8和35.9kcal / mol,分别在速率确定步骤(TS4)中,并且还实现了二硫化物复合物的显着热力学稳定性。用代表性替代替唑和抑制剂-5进行的转向分子动力学模拟和抑制剂-5证实了DFT结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号