...
首页> 外文期刊>ACS Omega >Concomitant in Situ FTIR and Impedance Measurements To Address the 2-Methylcyclopentanone Vapor-Sensing Mechanism in MnO2–Polymer Nanocomposites
【24h】

Concomitant in Situ FTIR and Impedance Measurements To Address the 2-Methylcyclopentanone Vapor-Sensing Mechanism in MnO2–Polymer Nanocomposites

机译:伴随原位FTIR和阻抗测量以解决MNO2-聚合物纳米复合材料中的2-甲基环戊酮蒸气传感机制

获取原文

摘要

Polymer nanocomposite-based sensors were prepared using cellulose acetate (CA), carbon nanoparticles (CNPs), and manganese dioxide (MnO2) nanorods to detect and to understand the sensing mechanism of 2-methylcyclopentanone vapor. A sensor with a mass ratio of 1:1.5:3 of MnO2/CNPs/CA as well as MnO2/CA and MnO2/CNP composite and MnO2 sensors were prepared. The sensor with the three sensing materials combined exhibited an enhancement of response for 2-methylcyclopentanone vapor, ascribed to a synergistic effect between MnO2/CNPs/CA. An in situ Fourier-transform infrared (FTIR)-combined online LCR meter setup was used to understand the sensing mechanism of the sensor. The sensing mechanism involved a deep oxidation decomposition of the analyte to CO2. This was confirmed from the in situ FTIR-combined online LCR meter results, where a new distinct CO2 bending mode IR band was recorded. To optimize the performance of the sensor, the composites were prepared by varying the amount of metal oxide added into the composites; sensor A (composition of mass ratio 1:1.5:3), sensor B (composition of mass ratio 2:1.5:3), and sensor C (composition of mass ratio 2.5:1.5:3); their compositions are MnO2/CNPs/CA. The performance of sensor B was higher than that of the other two sensors. The sensors also show relatively good response–recovery time. All fabricated sensors were found to have the sensing ability regenerated after the analyte was removed from the system without losing its sensing and recovery abilities. The structural and morphological features of the samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy.
机译:使用纤维素醋酸纤维素(CA),碳纳米粒子(CNP)和二氧化锰(MNO2)纳米棒来制备基于聚合物纳米复合材料的传感器,以检测和理解2-甲基环戊酮蒸气的传感机制。制备质量比为1:1.5:3的MNO2 / CNPS / CA以及MNO2 / CA和MNO2 / CNP复合材料和MNO2传感器的传感器。具有三种感测材料的传感器结合了对2-甲基环戊酮蒸气的反应增强,归因于MNO2 / CNPS / CA之间的协同效应。使用原位傅里叶变换红外(FTIR) - 组合在线LCR仪表设置用于了解传感器的传感机制。传感机制涉及分析物的深氧化分解于CO2。这是从原位FTIR合并的在线LCR计结果中确认,其中记录了新的独特二氧化碳弯曲模式IR频带。为了优化传感器的性能,通过改变添加到复合材料中的金属氧化物的量来制备复合材料;传感器A(质量比1:1.5:3的组成),传感器B(质量比2:1.5:3的组成)和传感器C(质量比2.5:1.5:3的组成);它们的组合物是mnO2 / cnps / ca。传感器B的性能高于其他两个传感器的性能。传感器还显示出相对良好的响应恢复时间。发现所有制造的传感器都具有在从系统中除去分析物的情况下再生的感测能力,而不会损失其传感和回收能力。样品的结构和形态学特征是通过X射线衍射,扫描电子显微镜,透射电子显微镜和拉曼光谱学的表征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号