首页> 外文期刊>Current Opinion in Chemical Engineering >Atomic-scale modeling toward enabling models of surface nanostructure formation in plasma-facing materials
【24h】

Atomic-scale modeling toward enabling models of surface nanostructure formation in plasma-facing materials

机译:面向等离子体材料表面纳米结构形成型号的原子尺度模拟

获取原文
           

摘要

Designing plasma-facing components (PFCs) that can tolerate the extreme heat and particle flux exposure conditions inside a fusion reactor core is one of the major obstacles toward the practical realization of nuclear fusion. In this article, atomic-scale simulation findings are reviewed that provide a fundamental understanding of the dynamical response of tungsten, an important PFC material, to reactor-relevant plasma exposure conditions leading to helium implantation. This hierarchy of simulations include molecular-statics computations to establish helium-surface interaction energetics and the origin of helium segregation on tungsten surfaces, targeted molecular-dynamics (MD) simulations of near-surface helium cluster reactions, and large-scale MD simulations of implanted helium evolution in plasma-exposed tungsten conducted in leadership-scale computing facilities. The simulations reveal that cluster-surface elastic interactions induce drift fluxes of small mobile helium clusters in the tungsten toward the plasma-exposed tungsten surface, which facilitate helium segregation on the surface and activate cluster reactions, most importantly trap mutation, which generates a flux of self-interstitial tungsten atoms to the surface. Such near-surface cluster dynamics has significant effects on PFC surface morphological evolution, near-surface defect structure formation, especially the nucleation and growth of helium nanobubbles, and the amount of helium retained in the PFC material upon plasma exposure. The above mechanistic understanding enables the development of atomistically-informed coarse-grained models of surface nanostructure formation in PFC materials, a crucial step toward predicting PFC surface degradation and improving PFC operating lifetime and reactor performance.
机译:设计面向等离子体的组件(PFC),可以容忍熔融反应堆核心内部的极端热量和粒子通量暴露条件是核融合实际实现的主要障碍之一。在本文中,审查了原子规模仿真结果,为钨,重要的PFC材料,反应堆相关血浆暴露条件提供了对钨的动态响应的基本认识。这种模拟层次包括分子静音计算,以建立氦表面相互作用能量和钨表面上的氦偏析的起源,近表面氦簇反应的靶向分子动力学(MD)模拟,以及植入的大规模MD模拟在领导级计算设施中进行等离子体暴露钨的氦气演变。仿真揭示了簇表面弹性相互作用诱导钨中的小型移动氦簇的漂移通量朝向血浆暴露的钨表面,这促进了表面上的氦偏析并激活簇反应,最重要的是捕获突变,这产生通量自质顽固的钨原子到表面。这种近表面簇动力学对PFC表面形态演化具有显着影响,近表面缺陷结构形成,尤其是氦纳米博bles的成核和生长,以及在等离子体暴露时保留在PFC材料中的氦气量。上述机械理解使得能够在PFC材料中开发原子上通知的表面纳米结构形成的表面纳米结构模型,这是预测PFC表面劣化和改善PFC操作寿命和反应器性能的关键步骤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号