...
首页> 外文期刊>Computational and mathematical methods in medicine >Computational Study to Identify the Effects of the KCNJ2 E299V Mutation in Cardiac Pumping Capacity
【24h】

Computational Study to Identify the Effects of the KCNJ2 E299V Mutation in Cardiac Pumping Capacity

机译:计算研究识别KCNJ2 E299V突变在心脏泵送能力中的影响

获取原文

摘要

The KCNJ2 gene mutations induce short QT syndrome (SQT3) by directly increasing the IK1 current. There have been many studies on the electrophysiological effects of mutations such as the KCNJ2 D172N that cause the SQT3. However, the KCNJ2 E299V mutation is distinguished from other representative gene mutations that can induce the short QT syndrome (SQT3) in that it increased IK1 current by impairing the inward rectification of K+ channels. The studies of the electromechanical effects on myocardial cells and mechanisms of E299V mutations are limited. Therefore, we investigated the electrophysiological changes and the concomitant mechanical responses according to the expression levels of the KCNJ2 E299V mutation during sinus rhythm and ventricular fibrillation. We performed excitation-contraction coupling simulations using a human ventricular model with both electrophysiological and mechanical properties. In order to observe the electromechanical changes due to the expression of KCNJ2 E299V mutation, the simulations were performed under normal condition (WT), heterogeneous mutation condition (WT/E299V), and pure mutation condition (E299V). First, a single-cell simulation was performed in three types of ventricular cells (endocardial cell, midmyocardial cell, and epicardial cell) to confirm the electrophysiological changes and arrhythmogenesis caused by the KCNJ2 E299V mutation. In three-dimensional sinus rhythm simulations, we compared electrical changes and the corresponding changes in mechanical performance caused by the expression level of E299V mutation. Then, we observed the electromechanical properties of the E299V mutation during ventricular fibrillation using the three-dimensional reentry simulation. The KCNJ2 E299V mutation accelerated the opening of the IK1 channel and increased IK1 current, resulting in a decrease in action potential duration. Accordingly, the QT interval was reduced by 48% and 60% compared to the WT condition, for the WT/E299V and E299V conditions, respectively. During sustained reentry, the wavelength was reduced due to the KCNJ2 E299V mutation. Furthermore, there was almost no ventricular contraction in both WT/E299V and E299V conditions. We concluded that in both sinus rhythm and fibrillation, the KCNJ2 E299V mutation results in very low contractility regardless of the expression level of mutation and increases the risk of cardiac arrest and cardiac death.
机译:KCNJ2基因突变通过直接增加IK1电流诱导短QT综合征(SQT3)。有很多关于导致SQT3的突变的电生理学效应的研究诸如KCNJ2D172N的电生理学效应。然而,KCNJ2 E299V突变与其他代表性基因突变的区别,其可以诱导短QT综合征(SQT3),使其通过损害K +通道的向内整流来增加IK1电流。对心肌细胞的机电效应和E299V突变机制的研究有限。因此,我们根据窦性能和心室原纤化的KCNJ2 E299V突变的表达水平研究了电生理学变化和伴随机械响应。我们使用人性学模型进行了电生理和机械性能的激发收缩耦合模拟。为了观察由于KCNJ2 E299V突变的表达引起的机电变化,在正常条件(WT),异质突变条件(WT / E299V)和纯突变条件(E299V)下进行仿真。首先,在三种类型的心室细胞(心内膜细胞,中性细胞和心外膜细胞)中进行单细胞模拟,以确认由KCNJ2 E299V突变引起的电生理变化和心律发生。在三维窦性节律模拟中,我们比较电气变化和由E299V突变表达水平引起的机械性能的相应变化。然后,我们观察了使用三维再入式模拟的心室颤动期间E299V突变的机电性质。 KCNJ2 E299V突变加速了IK1通道的开口和增加的IK1电流,导致动作电位持续时间降低。因此,对于WT / E299V和E299V条件,与WT条件相比,QT间隔减少了48%和60%。在持续再入中,由于KCNJ2 E299V突变,波长减少。此外,WT / E299V和E299V条件下几乎没有心室收缩。我们得出结论,在窦性心律和颤动中,无论突变的表达水平如何,KCNJ2 E299V突变导致非常低的收缩性,并增加心脏骤停和心脏死亡的风险。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号