...
首页> 外文期刊>Chemical science >Cytosine-5 methylation-directed construction of a Au nanoparticle-based nanosensor for simultaneous detection of multiple DNA methyltransferases at the single-molecule level
【24h】

Cytosine-5 methylation-directed construction of a Au nanoparticle-based nanosensor for simultaneous detection of multiple DNA methyltransferases at the single-molecule level

机译:胞嘧啶-5基于Au纳米粒子的纳米传感器的甲基化导向构造,用于在单分子水平上同时检测多个DNA甲基转移酶

获取原文
           

摘要

DNA methylation at cytosine/guanine dinucleotide islands (CpGIs) is the most prominent epigenetic modification in prokaryotic and eukaryotic genomes. DNA methyltransferases (MTases) are responsible for genomic methylation, and their aberrant activities are closely associated with various diseases including cancers. However, the specific and sensitive detection of multiple DNA MTases has remained a great challenge due to the specificity of the methylase substrate and the rareness of methylation-sensitive restriction endonuclease species. Here, we demonstrate for the first time the cytosine-5 methylation-directed construction of a Au nanoparticle (AuNP)-based nanosensor for simultaneous detection of multiple DNA MTases at the single-molecule level. We used the methyl-directed endonuclease GlaI to cleave the site-specific 5-methylcytosine (5-mC). In the presence of CpG and GpC MTases ( i.e. , M.SssI and M.CviPI), their hairpin substrates are methylated at cytosine-5 to form the catalytic substrates for GlaI, respectively, followed by simultaneous cleavage by GlaI to yield two capture probes. These two capture probes can hybridize with the Cy5/Cy3–signal probes which are assembled on the AuNPs, respectively, to form the double-stranded DNAs (dsDNAs). Each dsDNA with a guanine ribonucleotide can act as the catalytic substrate for ribonuclease (RNase HII), inducing recycling cleavage of signal probes to liberate large numbers of Cy5 and Cy3 molecules from the AuNPs. The released Cy5 and Cy3 molecules can be simply quantified by total internal reflection fluorescence (TIRF)-based single-molecule imaging for simultaneous measurement of M.SssI and M.CviPI MTase activities. This method exhibits good specificity and high sensitivity with a detection limit of 2.01 × 10 ~(?3) U mL ~(?1) for M.SssI MTase and 3.39 × 10 ~(?3) U mL ~(?1) for M.CviPI MTase, and it can be further applied for discriminating different kinds of DNA MTases, screening potential inhibitors, and measuring DNA MTase activities in human serum and cell lysate samples, holding great potential in biomedical research, clinical diagnosis, drug discovery and cancer therapeutics.
机译:在胞嘧啶/鸟嘌呤二核苷酸岛(CPGIS)的DNA甲基化是原核和真核基因组中最突出的表观遗传修饰。 DNA甲基转移酶(MTases)负责基因组甲基化,并且它们的异常活性与包括癌症的各种疾病密切相关。然而,由于甲基酶基质的特异性和甲基化敏感限制内切核酸酶物种的易变,多种DNA mTases的特异性和敏感性检测仍然是巨大的挑战。这里,我们证明了第一次胞嘧啶-5甲基化甲基化的Au纳米粒子(AUNP)的纳米传感器的构建,用于在单分子水平上同时检测多个DNA MTAse。我们使用了甲基导向的内切核酸酶Glai来切割位点特异性的5-甲基胞嘧啶(5-MC)。在CpG和GPC MTases(即M.SSI和M.CVIPI)的存在下,它们的发夹基材在胞嘧啶-5的甲基化以形成Glai的催化基材,然后通过Glai同时切割,得到两个捕获探针。这两种捕获探针可以分别与Cy5 / Cy3信号探针分别与剖腹产物(DSDNA)分别组装在AUNP上的CY5 / CY3信号探针杂交。具有鸟嘌呤核糖核苷酸的每个DSDNA可作为核糖核酸酶(RNase HII)的催化基材,诱导信号探针的再循环,从AUNP释放大量CY5和CY3分子。释放的Cy5和Cy3分子可以通过全内反射荧光(TiRF)基于单分子成像来简单地量化,用于同时测量M.SSI和M.CVIPI MTase活性。该方法表现出良好的特异性和高灵敏度,对于M.SSSI MTase的检出限为2.01×10〜(α3)U ml〜(α1)和3.39×10〜(α3)U ml〜(?1) MTASE,可以进一步应用于区分不同种类的DNA MTases,筛选潜在抑制剂和测量人血清和细胞裂解物样品中的DNA mTase活性,并占生物医学研究的巨大潜力,临床诊断,药物发现和癌症疗法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号