首页> 外文学位 >The structural basis of DNA recognition and base extrusion by a DNA cytosine-5 methyltransferase M.HaeIII.
【24h】

The structural basis of DNA recognition and base extrusion by a DNA cytosine-5 methyltransferase M.HaeIII.

机译:DNA胞嘧啶5甲基转移酶M.HaeIII的DNA识别和碱基挤出的结构基础。

获取原文
获取原文并翻译 | 示例

摘要

The goal of this study is to elucidate the mechanism of sequence specific DNA recognition and base extrusion by DNA cytosine-5 methyltransferase from Haemophilns aegyptius M.HaeIII. We have solved the crystal structure of the C71S mutant of M.HaeIII in complex with the substrate DNA at 2.4.Å resolution (InC below for brevity). For the first time an X-ray structure reveals a fully intrahelical target cytosine poised for extrusion by a cytosine-5 methyltransferase. The target cytosine is destabilized, having lost most of its stacking interactions with both neighbouring bases and making longer hydrogen bonds with the complementary guanine. In addition the protein competes for Watson-Crick hydrogen bonding of the target base pair. Both the protein and the DNA conformations are remarkably different from those in the structure where the target cytosine is extrahelical (ExC for brevity) [57]. In the ExC structure the cytosine 3' of the target base is the one forming a base pair with the guanine of the target base pair, whereas in the InC structure the bases within the recognition sequence stay correctly paired. The conformation of the DNA backbone 3' to the target cytosine changes significantly as well - it shifts further away from the protein. The catalytic loop of M.HaeIII (residues 71–89) is retracted away from the DNA as well. The results suggest that M.HaeIII actively participates in base flipping. It destabilizes the target base by altering both stacking and Watson-Crick hydrogen bonding two fundamental interactions that keep DNA bases intrahelical.;In order to elucidate the role of the intercalating residue Ile-221 in base extrusion, a glycine mutant was constructed. Its structure in complex with the specific DNA has been determined using X-ray crystallography. This structure is essentially identical to the ExC, suggesting that the extrahelical state, observed in ExC, can be achieved in the absence of the DNA helix stabilization provided by Ile-221.
机译:这项研究的目的是阐明埃及嗜血杆菌M.HaeIII的DNA胞嘧啶5甲基转移酶对序列特异性DNA识别和碱基突出的机制。我们已经解决了M.HaeIII的C71S突变体与底物DNA形成复合物的晶体结构,分辨率为2.4.Å(为简便起见,以下为InC)。 X射线结构首次揭示了完全螺旋内的靶胞嘧啶,准备通过胞嘧啶5甲基转移酶挤出。靶胞嘧啶不稳定,失去了与两个相邻碱基的大部分堆积相互作用,并与互补鸟嘌呤形成了更长的氢键。另外,蛋白质竞争靶碱基对的沃森-克里克氢键。蛋白质和DNA构象均与靶胞嘧啶在螺旋外(为简洁起见,采用ExC)的结构显着不同[57]。在ExC结构中,靶碱基的胞嘧啶3'是与靶碱基对的鸟嘌呤形成碱基对的胞嘧啶,而在InC结构中,识别序列内的碱基保持正确配对。 DNA骨架3'与靶胞嘧啶的构象也发生了显着变化-进一步远离蛋白质。 M.HaeIII的催化环(残基71–89)也从DNA缩回。结果表明,M.HaeIII积极参与碱基翻转。它通过改变堆积和Watson-Crick氢键这两个使DNA碱基保持螺旋内的基本相互作用来破坏目标碱基的稳定性;为了阐明插入残基Ile-221在碱基挤压中的作用,构建了一个甘氨酸突变体。已经使用X射线晶体学确定了其与特定DNA复合的结构。此结构与ExC基本相同,这表明在ExC中观察到的螺旋外状态可以在没有Ile-221提供的DNA螺旋稳定作用的情况下实现。

著录项

  • 作者

    Didovyk, Andriy.;

  • 作者单位

    Harvard University.;

  • 授予单位 Harvard University.;
  • 学科 Biology Molecular.;Biophysics General.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 110 p.
  • 总页数 110
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:36:58

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号