...
首页> 外文期刊>BMC Plant Biology >Genome-wide association study leads to novel genetic insights into resistance to Aspergillus flavus in maize kernels
【24h】

Genome-wide association study leads to novel genetic insights into resistance to Aspergillus flavus in maize kernels

机译:基因组 - 范围的协会研究导致对玉米核中的抗血管毒素的抗性进行了新的遗传洞察力

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Fungus infection in staple grains affects the food storage and threatens food security. The Aspergillus flavus is known to infect multiple grains and produce mycotoxin Aflatoxin B1, which is mutagenic, teratogenic and causes immunosuppression in animals. However, the molecular mechanism of maize resistance to A. flavus is largely unknown. Here we used corn kernels to investigate resistance genes to A. flavus using genome-wide association study (GWAS) of 313 inbred lines. We characterized the resistance levels of kernels after inoculating with A. flavus. The GWAS with 558,529 SNPs identified four associated loci involving 29 candidate genes that were linked to seed development, resistance or infection, and involved in signal pathways, seed development, germination, dormancy, epigenetic modification, and antimicrobial activity. In addition, a few candidate genes were also associated with several G-protein signaling and phytohormones that might involve in synergistic work conferring different resistance during seed development. Expression of 16 genes out of 29 during kernel development was also associated with resistance levels. We characterized the resistance levels of 313 maize kernels after inoculating with A. flavus, and found four associated loci and 16 candidate maize genes. The expressed 16 genes involved in kernel structure and kernel composition most likely contribute to mature maize kernels’ resistance to A. flavus, and in particular, in the development of pericarp. The linked candidate genes could be experimentally transformed to validate and manipulate fungal resistance. Thus this result adds value to maize kernels in breeding programs.
机译:FENPLE谷物中的真菌感染会影响食物储存并威胁粮食安全。已知曲霉属毛细血管感染多种晶粒并产生霉菌毒素黄曲霉毒素B1,其是致突变的,致畸和导致动物免疫抑制。然而,玉米抗性的分子机制在很大程度上是未知的。在这里,我们使用玉米核来研究313近交系的基因组关联研究(GWA)对A.FlaVus进行抗性基因。我们在接种用A.Flavus接种后,在粒子中表征了核的抵抗水平。具有558,529个SNP的GWA鉴定了四种相关基因座,涉及与种子发育,抗性或感染相关的29个候选基因,以及涉及信号途径,种子发育,萌发,休眠,表观遗传修饰和抗菌活性。此外,一些候选基因也与几种G蛋白信号传导和植物激素有关,这可能涉及在种子发育过程中赋予不同抗性的协同作用。在核发发射期间29中的16个基因的表达也与抵抗水平有关。我们在接种与黄色叶片接种后,表征了313型玉米核的阻力水平,并发现了四种相关的基因座和16个候选玉米基因。所表达的16个基因涉及核结构和核心组合物最有可能有助于成熟玉米核心对A.FlaVus的抵抗力,特别是在Pericarp的发育中。可以通过实验转化链接的候选基因以验证和操纵真菌抗性。因此,此结果为繁殖计划中的玉米内核增加了值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号