首页> 外文期刊>BMC Plant Biology >Comparative transcriptome analyses reveal different mechanism of high- and low-tillering genotypes controlling tiller growth in orchardgrass ( Dactylis glomerata L.)
【24h】

Comparative transcriptome analyses reveal different mechanism of high- and low-tillering genotypes controlling tiller growth in orchardgrass ( Dactylis glomerata L.)

机译:比较转录组分析显示果园中控制分蘖生长的高和低分蘖基因型的不同机制(Dactylis Glomerata L.)

获取原文
           

摘要

Tillering is an important agronomic trait underlying the yields and reproduction of orchardgrass (Dactylis glomerata), an important perennial forage grass. Although some genes affecting tiller initiation have been identified, the tillering regulatory network is still largely unknown, especially in perennial forage grasses. Thus, unraveling the regulatory mechanisms of tillering in orchardgrass could be helpful in developing selective strategies for high-yield perennial grasses. In this study, we generated high-throughput RNA-sequencing data from multiple tissues of tillering stage plants to identify differentially expressed genes (DEGs) between high- and low-tillering orchardgrass genotypes. Gene Ontology and pathway enrichment analyses connecting the DEGs to tillering number diversity were conducted. In the present study, approximately 26,282 DEGs were identified between two orchardgrass genotypes, AKZ-NRGR667 (a high-tillering genotype) and D20170203 (a low-tillering genotype), which significantly differed in tiller number. Pathway enrichment analysis indicated that DEGs related to the biosynthesis of three classes of phytohormones, i.e., strigolactones (SLs), abscisic acid (ABA), and gibberellic acid (GA), as well as nitrogen metabolism dominated such differences between the high- and low-tillering genotypes. We also confirmed that under phosphorus deficiency, the expression level of the major SL biosynthesis genes encoding DWARF27 (D27), 9-cis-beta-carotene 9′,10′-cleaving dioxygenase (CCD7), carlactone synthase (CCD8), and more axillary branching1 (MAX1) proteins in the high-tillering orchardgrass genotype increased more slowly relative to the low-tillering genotype. Here, we used transcriptomic data to study the tillering mechanism of perennial forage grasses. We demonstrated that differential expression patterns of genes involved in SL, ABA, and GA biosynthesis may differentiate high- and low-tillering orchardgrass genotypes at the tillering stage. Furthermore, the core SL biosynthesis-associated genes in high-tillering orchardgrass were more insensitive than the low-tillering genotype to phosphorus deficiency which can lead to increases in SL biosynthesis, raising the possibility that there may be distinct SL biosynthesis way in tillering regulation in orchardgrass. Our research has revealed some candidate genes involved in the regulation of tillering in perennial grasses that is available for establishment of new breeding resources for high-yield perennial grasses and will serve as a new resource for future studies into molecular mechanism of tillering regulation in orchardgrass.
机译:分蘖是一个重要的农艺特征,源于果园的产量和繁殖(Dactylis glomerata),这是一个重要的多年生牧草草。虽然已经确定了一些影响分蘖启动的基因,但分蘖监管网络仍然很大程度上是未知的,特别是在多年生牧草草地上。因此,解开园林中分蘖的监管机制可能有助于开发高产多年生草的选择性策略。在该研究中,我们从分蘖期植物的多个组织产生了高通量RNA测序数据,以鉴定高和低分蘖果园基因型之间的差异表达基因(DEGS)。进行基因本体和途径分析,将参数连接到分蘖数多样性。在本研究中,在两个果园基因型,AKZ-NRGR667(高分蘖基因型)和D20170203(低分蘖基因型)之间鉴定了大约26,282只DEGS,其在分蘖数中显着不同。途径富集分析表明,与三类植物激素的生物合成有关,即血症内酮(SLS),脱胶(ABA)和赤霉酸(GA)以及氮代谢占据了高低和低的差异 - 排行基因型。我们还证实,在磷缺乏下,编码Dwarf27(D27),9-CIS-β-胡萝卜素9',10'裂解二恶英酶(CCD7),克拉内酮合酶(CCD8)的主要SL生物合成基因的表达水平。高分蘖果园基因型中的腋生枝(MAX1)蛋白相对于低分蘖基因型越慢地增加。在这里,我们使用转录组数据来研究常年牧草草的分蘖机制。我们证明,参与SL,ABA和GA生物合成中涉及的基因的差异表达模式可以在分蘖期分化高和低分蘖的果园基因型。此外,高分蘖果园中的核心SL生物合成相关基因比对磷缺乏的低分蘖基因型更不敏感,这可能导致SL生物合成中的增加,提高可能在分蘖调节中可能有明显的SL生物合成方式的可能性果园草。我们的研究揭示了一些候选基因,参与了在多年生草中的分蘖中的调节,可用于建立高产多年生草地的新育种资源,并将作为未来研究进入果园中分蘖调控分子机制的新资源。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号