...
首页> 外文期刊>BMC Plant Biology >PI signal transduction and ubiquitination respond to dehydration stress in the red seaweed Gloiopeltis furcata under successive tidal cycles
【24h】

PI signal transduction and ubiquitination respond to dehydration stress in the red seaweed Gloiopeltis furcata under successive tidal cycles

机译:PI信号转导和泛素突显在连续潮汐循环下的红海草格洛博物馆毛皮数据中的脱水应力

获取原文
           

摘要

Intermittent dehydration caused by tidal changes is one of the most important abiotic factors that intertidal seaweeds must cope with in order to retain normal growth and reproduction. However, the underlying molecular mechanisms for the adaptation of red seaweeds to repeated dehydration-rehydration cycles remain poorly understood. We chose the red seaweed Gloiopeltis furcata as a model and simulated natural tidal changes with two consecutive dehydration-rehydration cycles occurring over 24?h in order to gain insight into key molecular pathways and regulation of genes which are associated with dehydration tolerance. Transcription sequencing assembled 32,681 uni-genes (GC content?=?55.32%), of which 12,813 were annotated. Weighted gene co-expression network analysis (WGCNA) divided all transcripts into 20 modules, with Coral2 identified as the key module anchoring dehydration-induced genes. Pathways enriched analysis indicated that the ubiquitin-mediated proteolysis pathway (UPP) and phosphatidylinositol (PI) signaling system were crucial for a successful response in G. furcata. Network-establishing and quantitative reverse transcription PCR (qRT-PCR) suggested that genes encoding ubiquitin-protein ligase E3 (E3–1), SUMO-activating enzyme sub-unit 2 (SAE2), calmodulin (CaM) and inositol-1,3,4-trisphosphate 5/6-kinase (ITPK) were the hub genes which responded positively to two successive dehydration treatments. Network-based interactions with hub genes indicated that transcription factor (e.g. TFIID), RNA modification (e.g. DEAH) and osmotic adjustment (e.g. MIP, ABC1, Bam1) were related to these two pathways. RNA sequencing-based evidence from G. furcata enriched the informational database for intertidal red seaweeds which face periodic dehydration stress during the low tide period. This provided insights into an increased understanding of how ubiquitin-mediated proteolysis and the phosphatidylinositol signaling system help seaweeds responding to dehydration-rehydration cycles.
机译:潮汐变化引起的间歇性脱水是透模海藻必须应付的最重要的非生物因素之一,以保留正常的生长和繁殖。然而,用于改编红海藻以重复脱水再水化循环的潜在的分子机制仍然明显。我们选择红海草Gloiopeltis Furcata作为模型和模拟的自然潮水变化,两种连续的脱水再水合循环发生超过24μm,以便深入了解与脱水耐受相关的基因的关键分子途径和基因的调节。转录测序组装了32,681个Uni-基因(GC含量?=Δ= 55.32%),其中注释12,813。加权基因共表达网络分析(WGCNA)将所有转录物分成20个模块,珊瑚2鉴定为锚固脱水诱导基因的键模块。富集分析表明,泛素介导的蛋白水解途径(UPP)和磷脂酰肌醇(PI)信号传导系统对于G. Furcata的成功反应至关重要。网络建立和定量逆转录PCR(QRT-PCR)表明编码泛素 - 蛋白质连接酶E3(E3-1),SUMO-活化酶亚单元2(SAE2),钙调蛋白(CAM)和肌醇-1,3的基因,4-三磷酸5/6-激酶(ITPK)是枢纽基因,其对两个连续的脱水处理响应。与轮毂基因的基于网络的相互作用表明转录因子(例如TFIID),RNA改性(例如DEA)和渗透调整(例如MIP,ABC1,BAM1)与这两个途径有关。来自G. Furcata的RNA测序的证据丰富了对潮汐期间透透中红海藻的信息数据库,在低潮期间面临周期性脱水应力。这提供了对泛素介导的蛋白水解和磷脂酰肌醇信号传导系统的增加了解,帮助海藻响应脱水再水化循环。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号