...
首页> 外文期刊>BMC Bioinformatics >Hybrid elementary flux analysis/nonparametric modeling: application for bioprocess control
【24h】

Hybrid elementary flux analysis/nonparametric modeling: application for bioprocess control

机译:混合基本通量分析/非参数建模:生物过程控制应用

获取原文
           

摘要

Background The progress in the "-omic" sciences has allowed a deeper knowledge on many biological systems with industrial interest. This knowledge is still rarely used for advanced bioprocess monitoring and control at the bioreactor level. In this work, a bioprocess control method is presented, which is designed on the basis of the metabolic network of the organism under consideration. The bioprocess dynamics are formulated using hybrid rigorous/data driven systems and its inherent structure is defined by the metabolism elementary modes. Results The metabolic network of the system under study is decomposed into elementary modes (EMs), which are the simplest paths able to operate coherently in steady-state. A reduced reaction mechanism in the form of simplified reactions connecting substrates with end-products is obtained. A dynamical hybrid system integrating material balance equations, EMs reactions stoichiometry and kinetics was formulated. EMs kinetics were defined as the product of two terms: a mechanistic/empirical known term and an unknown term that must be identified from data, in a process optimisation perspective. This approach allows the quantification of fluxes carried by individual elementary modes which is of great help to identify dominant pathways as a function of environmental conditions. The methodology was employed to analyse experimental data of recombinant Baby Hamster Kidney (BHK-21A) cultures producing a recombinant fusion glycoprotein. The identified EMs kinetics demonstrated typical glucose and glutamine metabolic responses during cell growth and IgG1-IL2 synthesis. Finally, an online optimisation study was conducted in which the optimal feeding strategies of glucose and glutamine were calculated after re-estimation of model parameters at each sampling time. An improvement in the final product concentration was obtained as a result of this online optimisation. Conclusion The main contribution of this work is a novel bioreactor optimal control method that uses detailed information concerning the metabolism of the underlying biological system. Moreover, the method allows the identification of structural modifications in metabolism over batch time.
机译:背景技术“ - 间”科学的进展允许对具有工业利益的许多生物系统更深入的了解。这种知识仍然很少用于生物反应器水平的晚期生物过程监测和控制。在这项工作中,提出了一种生物过程控制方法,其基于所考虑的生物体的代谢网络设计。使用混合式严格/数据驱动系统配制生物过程动力学,其固有的结构由新陈代谢基本模式定义。结果研究中的系统代谢网络分解为基本模式(EMS),这是能够在稳态上连贯操作的最简单路径。获得了将底物与最终产物的底物的简化反应形式的反应机制减少。配制了一种动态混合系统集成材料平衡,EMS反应化学计量和动力学。 EMS动力学被定义为两个术语的乘积:在过程优化角度下,机械/经验已知术语和必须从数据识别的未知项。这种方法允许通过各个基础模式携带的助熔剂量化,这有很大的帮助来识别作为环境条件的函数的主要途径。采用该方法分析生产重组融合糖蛋白的重组婴儿仓鼠肾(BHK-21A)培养物的实验数据。所识别的EMS动力学在细胞生长和IgG1-IL2合成期间证明了典型的葡萄糖和谷氨酰胺代谢反应。最后,进行了在线优化研究,其中在再估计每个采样时间的模型参数之后计算葡萄糖和谷氨酰胺的最佳喂养策略。由于该在线优化而获得最终产品浓度的改善。结论这项工作的主要贡献是一种新的生物反应器最佳控制方法,使用有关底层生物系统的新陈代谢的详细信息。此外,该方法允许在批量时间识别代谢中的结构修饰。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号