首页> 外文期刊>Scientific reports. >Lithium-ion conducting oxide single crystal as solid electrolyte for advanced lithium battery application
【24h】

Lithium-ion conducting oxide single crystal as solid electrolyte for advanced lithium battery application

机译:锂离子传导氧化物单晶作为先进锂电池施用的固体电解质

获取原文
           

摘要

Today, all-solid-state secondary lithium-ion batteries have attracted attention in research and development all over the world as a next-generation energy storage device. A key material for the all-solid-state lithium batteries is inorganic solid electrolyte, including oxide and sulfide materials. Among the oxide electrolytes, garnet-type oxide exhibits the highest lithium-ion conductivity and a wide electrochemical potential window. However, they have major problems for practical realization. One of the major problems is an internal short-circuit in charging and discharging. In the polycrystalline garnet-type oxide electrolyte, dendrites of lithium metal easily grow through the void or impurity in grain boundaries of the sintered body, which causes serious internal short-circuits in the battery system. To solve these problems, we present an all-solid-state battery system using a single-crystal oxide electrolyte. We are the first to successfully grow centimeter-sized single crystals of garnet-type by the floating zone method. The single-crystal solid electrolyte exhibits an extremely high lithium-ion conductivity of 10?3 S cm?1 at 298?K. The garnet-type single-crystal electrolyte has an advantageous bulk nature to realize the bulk conductivity without grain boundaries such as in a sintered polycrystalline body, and will be a game-changing technology for achieving highly safe advanced battery systems.
机译:如今,全固态二级锂离子电池引起了世界各地的研发,作为下一代储能装置。全固态锂电池的关键材料是无机固体电解质,包括氧化物和硫化物材料。在氧化物电解质中,石榴石型氧化物具有最高的锂离子电导率和宽的电化学潜在窗口。但是,他们对实际实现有重大问题。其中一个主要问题是充电和放电的内部短路。在多晶石榴石型氧化物电解质中,锂金属的树突易于通过烧结体的晶界中的空隙或杂质生长,这导致电池系统中的严重内部短路。为了解决这些问题,我们使用单晶氧化物电解质介绍全固态电池系统。我们是第一个通过浮区法成功成功地成功地生长石榴石型的单晶。单晶固体电解质在298℃下表现出极高的锂离子电导率10·3 s cm 2。石榴石型单晶电解质具有有利的散装性质,实现散装电导率,而没有晶界,例如在烧结的多晶体体中,并且将是实现高度安全的先进电池系统的游戏变化技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号