...
首页> 外文期刊>Scientific reports. >Resonance interaction energy between two entangled atoms in a photonic bandgap environment
【24h】

Resonance interaction energy between two entangled atoms in a photonic bandgap environment

机译:光子带隙环境中两个缠结原子之间的共振相互作用能

获取原文
   

获取外文期刊封面封底 >>

       

摘要

We consider the resonance interaction energy between two identical entangled atoms, where one is in the excited state and the other in the ground state. They interact with the quantum electromagnetic field in the vacuum state and are placed in a photonic-bandgap environment with a dispersion relation quadratic near the gap edge and linear for low frequencies, while the atomic transition frequency is assumed to be inside the photonic gap and near its lower edge. This problem is strictly related to the coherent resonant energy transfer between atoms in external environments. The analysis involves both an isotropic three-dimensional model and the one-dimensional case. The resonance interaction asymptotically decays faster with distance compared to the free-space case, specifically as 1/r2 compared to the 1/r free-space dependence in the three-dimensional case, and as 1/r compared to the oscillatory dependence in free space for the one-dimensional case. Nonetheless, the interaction energy remains significant and much stronger than dispersion interactions between atoms. On the other hand, spontaneous emission is strongly suppressed by the environment and the correlated state is thus preserved by the spontaneous-decay decoherence effects. We conclude that our configuration is suitable for observing the elusive quantum resonance interaction between entangled atoms.
机译:我们考虑两个相同的缠结原子之间的共振相互作用能量,其中一个是在兴奋状态下,另一个在地面状态。它们在真空状态下与量子电磁场相互作用,并在光子带隙环境中置于间隙边缘附近的色散关系,并且对于低频的线性,而原子过渡频率被假定在光子间隙内部和近它的下边缘。这个问题与外部环境中的原子之间的相干谐振能量转移严格相关。分析涉及各向同性三维模型和一维壳体。与自由空间壳体相比,渐近相比,渐近渐近渐近距离衰减,特别是与三维壳体中的1 / R自由空间依赖性相比为1 / R2,与振荡依赖性相比,如1 / R一维案例的空间。尽管如此,相互作用能量仍然显着,比原子之间的分散相互作用更强大。另一方面,环境强烈地抑制了自发发射,因此通过自发衰减的脱干效果保留相关状态。我们得出结论,我们的配置适用于观察缠绕原子之间的难以通过量子共振相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号