...
首页> 外文期刊>Scientific reports. >QM/MM free energy Simulations of an efficient Gluten Hydrolase (Kuma030) Implicate for a Reactant-State Based Protein-Design Strategy for General Acid/Base Catalysis
【24h】

QM/MM free energy Simulations of an efficient Gluten Hydrolase (Kuma030) Implicate for a Reactant-State Based Protein-Design Strategy for General Acid/Base Catalysis

机译:QM / mm的无效谷蛋白水解酶(Kuma030)的自由能模拟牵引反应态的蛋白质设计策略,用于一般酸/碱催化

获取原文

摘要

It is a grand attraction for contemporary biochemists to computationally design enzymes for novel chemical transformation or improved catalytic efficiency. Rosetta by Baker et al. is no doubt the leading software in the protein design society. Generally, optimization of the transition state (TS) is part of the Rosetta’s protocol to enhance the catalytic efficiency of target enzymes, since TS stabilization is the determining factor for catalytic efficiency based on the TS theory (TST). However, it is confusing that optimization of the reactant state (RS) also results in significant improvement of catalytic efficiency in some cases, such as design of gluten hydrolase (Kuma030). Therefore, it is interesting to uncover underlying reason why a better binding in the RS leading to an increased k cat . In this study, the combined quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) and free energy (PMF) simulations, pK a calculation, and the statistical analysis such as the ANOVA test were carried out to shed light on the interesting but elusive question. By integration of our computational results and general acid/base theory, we answered the question why optimization of RS stabilization leads to a better TS stabilization in the general acid/base catalysis. In addition, a new and simplified protein-design strategy is proposed for the general acid/base catalysis. The idea, that application of traditional well-defined enzyme mechanism to protein design strategy, would be a great help for methodology development of protein design.
机译:这是一种隆重的吸引力,用于当代生物化学家,用于计算新的化学转化或改善的催化效率。罗萨塔by baker等。毫无疑问是蛋白质设计社会中的领先软件。通常,过渡状态(TS)的优化是Rosetta方案的一部分,以提高靶酶的催化效率,因为TS稳定是基于TS理论(TST)的催化效率的确定因素。然而,令人困惑的是,在某些情况下,反应性状态的优化也导致催化效率的显着提高,例如麸质水解酶的设计(Kuma030)。因此,揭示潜在理性的潜在原因是有趣的,为什么在卢比中更好地结合导致增加的K猫。在本研究中,组合的量子机械/分子机械(QM / mm)分子动力学(MD)和自由能(PMF)模拟,PK计算和统计分析如ANOVA测试进行了缩小有趣但难以捉摸的问题。通过整合我们的计​​算结果和一般酸/基础理论,我们回答了为什么RS稳定化优化导致一般酸/碱催化中的TS稳定性更好的问题。此外,提出了一种新的和简化的蛋白质设计策略,用于一般酸/碱催化。该思想,将传统定义的酶机制应用于蛋白质设计策略,这将是蛋白质设计方法的大大帮助。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号