...
首页> 外文期刊>SN Applied Sciences >Computational evaluation of a novel beta radiation probe design using integrated circuits
【24h】

Computational evaluation of a novel beta radiation probe design using integrated circuits

机译:用集成电路计算新型β辐射探针设计的计算

获取原文
获取原文并翻译 | 示例

摘要

Researchers at Texas A&M University (TAMU) have designed the radiation integrated circuit (RIC) for deployment as anew radiation detection system. Most integrated circuits are susceptible to radiation-induced failures, and decades ofresearch have gone into solving this problem. Research at TAMU has led to a novel integrated circuit design that utilizesboth radiation-hardened areas (RHAs) and radiation-sensitive areas (RSAs) to take advantage of these failures. The RSAsare susceptible to charged particle interactions, allowing the RIC to detect alpha and beta particles. However, beta particlesare more penetrating compared to alpha particles, resulting in a lower interaction probability for beta particlesincident on a bare RIC. In any material, the higher the beta energy, the deeper the beta particle can penetrate; therefore,the use of a wedge-shaped attenuator for beta particle detection not only increases interaction probability, but alsoprovides the capability to perform maximum beta energy discrimination in the field. The objective of this research wasto optimize the design of the RIC. Monte Carlo N-particle radiation transport code (MCNP) simulations assessed the betaparticle detection and maximum energy discrimination performance of plate glass, borosilicate (Pyrex®) glass, acrylic(Lucite®), and natural rubber attenuators. In this proof-of-concept analysis, natural rubber was observed to be the optimalattenuating material for the beta probe with respect to maximum energy discrimination capability and weight, but allmaterials considered proved to be good candidates. The results of this study are promising and indicate the potential toachieve maximum beta particle energy discrimination of 50 keV using a wedged, natural rubber attenuator on the RIC.
机译:德克萨斯州A&M大学的研究人员(TAMU)设计了辐射集成电路(RIC),用于部署作为新辐射检测系统。大多数集成电路易受辐射引起的故障和数十年的影响研究已经解决了解决这个问题。 Tamu的研究导致了一种利用的新型集成电路设计辐射硬化区域(RHAS)和辐射敏感区域(RSAS)以利用这些故障。 RSAS.易受带电颗粒相互作用的影响,使RIC检测α和β颗粒。但是,β粒子与α颗粒相比更渗透,导致β粒子的相互作用概率较低在裸露的ric上事件。在任何材料中,β能量越高,β颗粒越深;所以,使用楔形衰减器的β粒子检测不仅增加了相互作用概率,还可以使用提供在现场执行最大β能量辨别的能力。这项研究的目的是优化RIC的设计。蒙特卡罗n粒子辐射传输代码(MCNP)模拟评估了β板材玻璃,硼硅酸盐(Pyrex®)玻璃,丙烯酸的粒子检测和最大能量辨别性能(Lucite®)和天然橡胶衰减器。在这个概念证明分析中,观察到天然橡胶是最佳的相对于最大能量辨别能力和重量,衰减β探针的材料,但所有被认为是良好的候选材料。该研究的结果是有前途的,并表明潜力在RIC上使用楔形的天然橡胶衰减器实现50keV的最大β粒子能量辨别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号