首页> 外文期刊>Scientific reports. >Realizing a facile and environmental-friendly fabrication of high-performance multi-crystalline silicon solar cells by employing ZnO nanostructures and an Al2O3 passivation layer
【24h】

Realizing a facile and environmental-friendly fabrication of high-performance multi-crystalline silicon solar cells by employing ZnO nanostructures and an Al2O3 passivation layer

机译:通过采用ZnO纳米结构和Al2O3钝化层来实现高性能多晶硅太阳能电池的容纳和环保型制备

获取原文
           

摘要

Nowadays, the multi-crystalline silicon (mc-Si) solar cells dominate the photovoltaic industry. However, the current acid etching method on mc-Si surface used by firms can hardly suppress the average reflectance value below 25% in the visible light spectrum. Meanwhile, the nitric acid and the hydrofluoric contained in the etching solution is both environmental unfriendly and highly toxic to human. Here, a mc-Si solar cell based on ZnO nanostructures and an Al2O3 spacer layer is demonstrated. The eco-friendly fabrication is realized by low temperature atomic layer deposition of Al2O3 layer as well as ZnO seed layer. Moreover, the ZnO nanostructures are prepared by nontoxic and low cost hydro-thermal growth process. Results show that the best passivation quality of the n(+) -type mc-Si surface can be achieved by balancing the Si dangling bond saturation level and the negative charge concentration in the Al2O3 film. Moreover, the average reflectance on cell surface can be suppressed to 8.2% in 400-900?nm range by controlling the thickness of ZnO seed layer. With these two combined refinements, a maximum solar cell efficiency of 15.8% is obtained eventually. This work offer a facile way to realize the environmental friendly fabrication of high performance mc-Si solar cells.
机译:如今,多晶硅(MC-Si)太阳能电池主导了光伏产业。然而,在可见光光谱中,使用者使用的MC-Si表面上的电流酸蚀刻方法几乎不能抑制低于25%的平均反射值。同时,蚀刻溶液中含有的硝酸和氢氟是对人类的环境不友好和毒性。这里,证明基于ZnO纳米结构和Al2O3间隔层的MC-Si太阳能电池。通过Al2O3层的低温原子层沉积以及ZnO种子层来实现环保型制造。此外,通过无毒和低成本的水热生长过程制备ZnO纳米结构。结果表明,通过平衡Al2O3薄膜中的Si悬挂粘合饱和度和负电荷浓度,可以实现N(+)型MC-Si表面的最佳钝化质量。此外,通过控制ZnO种子层的厚度,可以将细胞表面的平均反射率抑制在400-900·nm范围内的8.2%。通过这两个组合的改进,最终获得了15.8%的最大太阳能电池效率。这项工作提供了一种易于实现高性能MC-Si太阳能电池的环保制造的方式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号