首页> 外文期刊>Physical Review C >Combining symmetry breaking and restoration with configuration interaction: A highly accurate many-body scheme applied to the pairing Hamiltonian
【24h】

Combining symmetry breaking and restoration with configuration interaction: A highly accurate many-body scheme applied to the pairing Hamiltonian

机译:用配置交互结合对称性断裂和恢复:一种高度准确的多体方案,适用于配对哈密顿时期

获取原文
获取原文并翻译 | 示例
           

摘要

Background: Ab initio many-body methods have been developed over the past ten years to address mid-mass nuclei. In their best current level of implementation, their accuracy is of the order of a few percent error on the ground-state correlation energy. Recently implemented variants of these methods are operating a breakthrough in the description of medium-mass open-shell nuclei at a polynomial computational cost while putting state-ofthe- art models of internucleon interactions to the test. Purpose: As progress in the design of internucleon interactions is made, and as questions one wishes to answer are refined in connection with increasingly available experimental data, further efforts must be made to tailor many-body methods that can reach an even higher precision for an even larger number of observable quantum states or nuclei. The objective of the present work is to contribute to such a quest by designing and testing a new many-body scheme. Methods: We formulate a truncated configuration-interaction method that consists of diagonalizing the Hamiltonian in a highly truncated subspace of the total N-body Hilbert space. The reduced Hilbert space is generated via the particle-number projected BCS state along with projected seniority-zero two- and four-quasiparticle excitations. Furthermore, the extent bywhich the underlying BCS state breaks U(1) symmetry is optimized in the presence of the projected two- and four-quasiparticle excitations. This constitutes an extension of the so-called restricted variation after projection method in use within the frame of multireference energy density functional calculations. The quality of the newly designed method is tested against exact solutions of the so-called attractive pairing Hamiltonian problem. Results: By construction, the method reproduces exact results for N = 2 and N = 4. For N = (8, 16, 20), the error in the ground-state correlation energy is less than (0.006%, 0.1%, 0.15%) across the entire range of internucleon coupling defining the pairing Hamiltonian and driving the normal-to-superfluid quantum phase transition. The presently proposed method offers the advantage of automatic access to the low-lying spectroscopy, which it does with high accuracy. Conclusions: The numerical cost of the newly designed variational method is polynomial (N6) in system size. This method achieves unprecedented accuracy for the ground-state correlation energy, effective pairing gap, and one-body entropy as well as for the excitation energy of low-lying states of the attractive pairing Hamiltonian. This constitutes a sufficiently strong motivation to envision its application to realistic nuclear Hamiltonians in view of providing a complementary, accurate, and versatile ab initio description of mid-mass open-shell nuclei in the future.
机译:背景:AB Initio在过去十年中开发了许多身体方法,以解决中部核心。在其最佳当前的实施水平中,它们的准确性是对地面相关能量的几个百分比误差的顺序。最近实施的这些方法的变体在中质量露天核的描述中以多项式计算成本进行了突破,同时将核心相互作用的核心相互作用的状态进行了多项式计算成本。目的:随着核心互动的设计中的进展,并且作为一个希望回答的问题与越来越多的实验数据相关,必须进一步努力定制许多身体方法,可以达到更高的精度甚至更多的可观察量子态或核。本工作的目的是通过设计和测试新的多体计划来促进此类任务。方法:我们制定了一个截断的配置 - 交互方法,包括在总N-BITBILBERT空间的高截短子空间中对角度对角度化。通过粒子数预定的BCS状态与预计的资历零两个和四Quasiparticle激发器一起产生减少的希尔伯特空间。此外,基础BCS状态断裂u(1)对称性在突出的二粒子和四Quasiparticle激励的存在下进行了优化的程度。这构成了在多引导能量密度函数计算帧中使用的投影方法之后所谓的受限变化的延伸。测试新设计的方法的质量是针对所谓有吸引力配对哈密顿问题的精确解决方案。结果:通过施工,该方法再现n = 2和n = 4的精确结果。对于n =(8,16,20),地面相关能量的误差小于(0.006%,0.1%,0.15 %)跨越核心耦合的整个范围,限定配对哈密顿和驱动正常到超流量子相转变。目前提出的方法提供了自动访问低洼光谱的优点,它具有高精度。结论:新设计的变分方法的数值成本是系统尺寸的多项式(N6)。该方法实现了前所未有的地面相关能量,有效配对间隙和一体熵的精度,以及有吸引力配对Hamiltonian的低洼状态的激发能量。这构成了一个充分强大的动机,以便将来提供互补,准确和多功能的AB Initio描述,以便在未来提供互补,准确和多功能的AB初始描述。

著录项

  • 来源
    《Physical Review C》 |2017年第2017期|014326.1-014326.14|共14页
  • 作者单位

    Institut de Physique Nucleaire IN2P3-CNRS Universite Paris-Sud Universite Paris-Saclay F-91406 Orsay Cedex France CEA DAM DIF F-91297 Arpajon France;

    Institut de Physique Nucleaire IN2P3-CNRS Universite Paris-Sud Universite Paris-Saclay F-91406 Orsay Cedex France;

    Extreme Light Infrastructure - Nuclear Physics (ELI-NP) Magurele Romania;

    CEA DAM DIF F-91297 Arpajon France;

    KU Leuven Instituut voor Kern- en Stralingsfysica 3001 Leuven Belgium CEA DRF/IRFU/SPhN Universite Paris-Saclay 91191 Gif-sur-Yvette France National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy Michigan State University East Lansing Michigan 48824 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号