...
首页> 外文期刊>Solar RRL >Carbon Dots–Implanted Graphitic Carbon Nitride Nanosheets for Photocatalysis: Simultaneously Manipulating Carrier Transport in Inter- and Intralayers
【24h】

Carbon Dots–Implanted Graphitic Carbon Nitride Nanosheets for Photocatalysis: Simultaneously Manipulating Carrier Transport in Inter- and Intralayers

机译:碳点—植入的石墨化氮化碳纳米片用于光催化:同时操纵层间和层内的载流子传输。

获取原文
获取原文并翻译 | 示例
           

摘要

Carbon dots (CDs) present unique photoinduced charge transfer and reservoir properties, showing promising application potential in photocatalysis. The in situ preparation of CDs in a graphitic carbon nitride (g-C_3N_4) matrix provides not only a new approach for electronic structure modulation and heterostructure construction but also an effective way to improve their photocatalytic performance. However, incorporating CDs into ultrathin g-C_3N_4 remains a challenge. Moreover, simultaneously tuning their carrier transport in inter- and intralayers is difficult but significant for their application as efficient photocatalysts. Herein, an unprecedented Se-chaperoned thermal polymerization method for the synthesis of zero-dimensional CD-implanted g-C_3N_4 nanosheets (CCNS) is reported. The CCNS simultaneously facilitate carrier transport and suppress recombination because of the seamless bonding heterostructure of CDs within the in-plane domains of the g-C_3N_4 nanosheets. Accordingly, the photocatalytic rates of water splitting for H_2 evolution and CO_2 reduction are enhanced 3.1 and 4.1 times, respectively. In addition, the photocatalytic RhB degradation efficiency dramatically increases 18 times. This work presents a promising solution to solving the current worldwide energy shortage and environmental pollution issues.
机译:碳点(CD)具有独特的光诱导电荷转移和储层特性,在光催化中显示出广阔的应用前景。石墨氮化碳(g-C_3N_4)基体中CD的原位制备不仅为电子结构调节和异质结构的构建提供了一种新方法,而且为提高其光催化性能提供了有效的途径。但是,将CD集成到超薄g-C_3N_4中仍然是一个挑战。而且,同时调节它们在层间和层内的载流子传输是困难的,但是对于它们作为有效的光催化剂的应用而言是重要的。在此,报道了用于合成零维CD注入的g-C_3N_4纳米片(CCNS)的史无前例的硒伴侣热聚合方法。由于在g-C_3N_4纳米片的面内域内CD的无缝结合异质结构,CCNS同时促进了载流子的运输并抑制了重组。因此,用于H 2释放和CO 2还原的水分解的光催化速率分别提高了3.1倍和4.1倍。此外,光催化RhB的降解效率大大提高了18倍。这项工作提出了解决当前全球能源短缺和环境污染问题的有希望的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号