首页> 外文期刊>Scientific reports. >Artificial neural networks for density-functional optimizations in fermionic systems
【24h】

Artificial neural networks for density-functional optimizations in fermionic systems

机译:人工神经网络用于费米离子系统中的密度泛函优化

获取原文
       

摘要

In this work we propose an artificial neural network functional to the ground-state energy of fermionic interacting particles in homogeneous chains described by the Hubbard model. Our neural network functional was proven to have an excellent performance: it deviates from numerically exact calculations by less than 0.15% for a vast regime of interactions and for all the regimes of filling factors and magnetizations. When compared to analytical functionals, the neural functional was found to be more precise for all the regimes of parameters, being particularly superior at the weakly interacting regime: where the analytical parametrization fails the most, ~7%, against only ~0.1% for the neural network. We have also applied our homogeneous functional to finite, localized impurities and harmonically confined systems within density-functional theory (DFT) methods. The results show that while our artificial neural network approach is substantially more accurate than other equivalently simple and fast DFT treatments, it has similar performance than more costly DFT calculations and other independent many-body calculations, at a fraction of the computational cost.
机译:在这项工作中,我们提出了一个人工神经网络,该网络对由Hubbard模型描述的均相链中的铁离子相互作用粒子的基态能量起作用。我们的神经网络功能已被证明具有出色的性能:对于广泛的相互作用方式以及所有填充因子和磁化方式,它与精确数值计算的偏差都小于0.15%。与分析功能相比,发现神经功能在所有参数方案中都更为精确,在弱相互作用状态下尤为优越:分析参数化失败最多的是7%,而分析参数化失败的仅为0.1%。神经网络。我们还将密度泛函理论(DFT)方法中的均质泛函应用于有限的局部杂质和谐波约束系统。结果表明,虽然我们的人工神经网络方法比其他等效的简单快速的DFT处理要精确得多,但与更昂贵的DFT计算和其他独立的多体计算相比,它具有相似的性能,而计算成本却很小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号