首页> 外文期刊>Scientific reports. >Elastic Deformations in 2D van der waals Heterostructures and their Impact on Optoelectronic Properties: Predictions from a Multiscale Computational Approach
【24h】

Elastic Deformations in 2D van der waals Heterostructures and their Impact on Optoelectronic Properties: Predictions from a Multiscale Computational Approach

机译:二维范德华异质结构中的弹性变形及其对光电特性的影响:基于多尺度计算方法的预测

获取原文
           

摘要

Recent technological advances in the isolation and transfer of different 2-dimensional (2D) materials have led to renewed interest in stacked Van der Waals (vdW) heterostructures. Interlayer interactions and lattice mismatch between two different monolayers cause elastic strains, which significantly affects their electronic properties. Using a multiscale computational method, we demonstrate that significant in-plane strains and the out-of-plane displacements are introduced in three different bilayer structures, namely graphene-hBN, MoS2-WS2 and MoSe2-WSe2, due to interlayer interactions which can cause bandgap change of up to ~300?meV. Furthermore, the magnitude of the elastic deformations can be controlled by changing the relative rotation angle between two layers. Magnitude of the out-of-plane displacements in graphene agrees well with those observed in experiments and can explain the experimentally observed bandgap opening in graphene. Upon increasing the relative rotation angle between the two lattices from 0° to 10°, the magnitude of the out-of-plane displacements decrease while in-plane strains peaks when the angle is ~6°. For large misorientation angles (>10°), the out-of-plane displacements become negligible. We further predict the deformation fields for MoS2-WS2 and MoSe2-WSe2 heterostructures that have been recently synthesized experimentally and estimate the effect of these deformation fields on near-gap states.
机译:在隔离和转移不同二维(2D)材料方面的最新技术进步,引起了人们对堆叠范德华(vdW)异质结构的新兴趣。两个不同单层之间的层间相互作用和晶格失配会导致弹性应变,从而极大地影响其电子性能。使用多尺度计算方法,我们证明了显着的面内应变和面外位移引入了三种不同的双层结构,即石墨烯-hBN,MoS 2 -WS 2 和MoSe 2 -WSe 2 ,这是由于层间相互作用导致带隙变化高达〜300?meV。此外,可以通过改变两层之间的相对旋转角度来控制弹性变形的大小。石墨烯中平面外位移的大小与实验中观察到的一致,并且可以解释实验观察到的石墨烯中的带隙开口。当两个晶格之间的相对旋转角度从0°增加到10°时,平面外位移的大小减小,而当角度为〜6°时,平面内应变达到峰值。对于较大的错位角(> 10°),平面外位移可以忽略不计。我们进一步预测了MoS 2 -WS 2 和MoSe 2 -WSe 2 异质结构的形变场最近通过实验合成并估计了这些变形场对近能隙状态的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号