首页> 外文期刊>Scientific reports. >Live visualizations of single isolated tubulin protein self-assembly via tunneling current: effect of electromagnetic pumping during spontaneous growth of microtubule
【24h】

Live visualizations of single isolated tubulin protein self-assembly via tunneling current: effect of electromagnetic pumping during spontaneous growth of microtubule

机译:单个可视化微管蛋白通过隧道电流自组装的实时可视化:微管自发生长期间电磁泵的作用

获取原文
       

摘要

As we bring tubulin protein molecules one by one into the vicinity, they self-assemble and entire event we capture live via quantum tunneling. We observe how these molecules form a linear chain and then chains self-assemble into 2D sheet, an essential for microtubule, —fundamental nano-tube in a cellular life form. Even without using GTP, or any chemical reaction, but applying particular ac signal using specially designed antenna around atomic sharp tip we could carry out the self-assembly, however, if there is no electromagnetic pumping, no self-assembly is observed. In order to verify this atomic scale observation, we have built an artificial cell-like environment with nano-scale engineering and repeated spontaneous growth of tubulin protein to its complex with and without electromagnetic signal. We used 64 combinations of plant, animal and fungi tubulins and several doping molecules used as drug, and repeatedly observed that the long reported common frequency region where protein folds mechanically and its structures vibrate electromagnetically. Under pumping, the growth process exhibits a unique organized behavior unprecedented otherwise. Thus, “common frequency point” is proposed as a tool to regulate protein complex related diseases in the future.
机译:当我们将微管蛋白蛋白分子一个接一个地带入附近时,它们会自组装,并且我们通过量子隧道捕获整个事件。我们观察到这些分子如何形成线性链,然后链自组装成2D薄片,这对于微管(细胞生命形式的基本纳米管)必不可少。即使不使用GTP或任何化学反应,但使用特别设计的天线在原子尖头周围施加特定的ac信号,我们也可以进行自组装,但是,如果没有电磁泵浦,则不会观察到自组装。为了验证这种原子尺度的观察,我们建立了一个具有纳米尺度工程学的人造细胞样环境,并在有或没有电磁信号的情况下,将微管蛋白蛋白质反复自发生长为其复合物。我们使用了植物,动物和真菌微管蛋白的64种组合以及几种用作药物的掺杂分子,并反复观察到长期报道的共同频率区域,在该频率范围内蛋白质会机械折叠,其结构也会发生电磁振动。在抽水作用下,生长过程展现出前所未有的独特组织行为。因此,提出了“共同频点”作为将来调控蛋白质复合物相关疾病的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号