...
首页> 外文期刊>Scientific reports. >Using Quantum Confinement to Uniquely Identify Devices
【24h】

Using Quantum Confinement to Uniquely Identify Devices

机译:使用量子限制来唯一标识设备

获取原文
           

摘要

Modern technology unintentionally provides resources that enable the trust of everyday interactions to be undermined. Some authentication schemes address this issue using devices that give a unique output in response to a challenge. These signatures are generated by hard-to-predict physical responses derived from structural characteristics, which lend themselves to two different architectures, known as unique objects (UNOs) and physically unclonable functions (PUFs). The classical design of UNOs and PUFs limits their size and, in some cases, their security. Here we show that quantum confinement lends itself to the provision of unique identities at the nanoscale, by using fluctuations in tunnelling measurements through quantum wells in resonant tunnelling diodes (RTDs). This provides an uncomplicated measurement of identity without conventional resource limitations whilst providing robust security. The confined energy levels are highly sensitive to the specific nanostructure within each RTD, resulting in a distinct tunnelling spectrum for every device, as they contain a unique and unpredictable structure that is presently impossible to clone. This new class of authentication device operates with minimal resources in simple electronic structures above room temperature.
机译:现代技术无意间提供了使日常交互的信任受到破坏的资源。一些身份验证方案使用响应于挑战提供唯一输出的设备来解决此问题。这些签名是由难以预测的,来自结构特征的物理响应生成的,这些物理响应将其自身应用于两种不同的体系结构,即唯一对象(UNO)和物理不可克隆的功能(PUF)。 UNO和PUF的经典设计限制了它们的大小,并在某些情况下限制了它们的安全性。在这里,我们表明,通过利用通过共振隧穿二极管(RTD)的量子阱进行的隧穿测量中的波动,量子限制有助于在纳米级提供独特的身份。这提供了简单的身份测量,没有常规的资源限制,同时提供了强大的安全性。受限的能级对每个RTD内的特定纳米结构高度敏感,从而为每个器件产生不同的隧穿光谱,因为它们包含独特且不可预测的结构,目前无法克隆。这种新型的身份验证设备在室温以上的简单电子结构中以最少的资源运行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号