首页> 外文学位 >High efficiency thermoelectric devices fabricated using quantum well confinement techniques.
【24h】

High efficiency thermoelectric devices fabricated using quantum well confinement techniques.

机译:使用量子阱限制技术制造的高效热电器件。

获取原文
获取原文并翻译 | 示例

摘要

Experimental results are presented of thermoelectric materials, specifically two-dimensional quantum well confinement structures, formed by ion beam sputter deposition methods. Applications of these thermoelectric devices include nearly any system that generates heat including waste heat. The targeted applications of this research include harvesting of waste heat from stand-alone generator systems and automobiles. Thermoelectric generator modules based on an in-plane orientation of nano-scale, thin-film, superlattices have demonstrated very high performance and are appropriate for a wide range of waste heat recovery applications. In this project, the first, fast, ion-beam-based deposition process was developed for producing Si/SiC (n-type) and B4C/B 9C (p-type) superlattices. The deposition process uses low-cost powder targets, a simplified substrate holder with embedded heater, a QCM deposition rate monitor, and stepper-motor-controlled masks. Deposition times for individual layers are shown to be significantly shorter than those achieved in magnetron-based systems. As an example of the speed of the process, a 10-nm thick Si layer can be deposited in as little as 20 sec while a SiC layer can be deposited in less than 100 sec. Electrical resistivities, thermal conductivities and Seebeck coefficients are reported for the deposited films as well as their respective non-dimensional figures of merit (zT). Figures of merit (zT) approaching 20 at modest temperatures of ~600 K were observed. These measurements are made in-plane where enhanced Seebeck values and reduced electrical resistivities have also been reported in the literature. A method for directly measuring thermal conductivity in the plane of the superlattice is described that uses MEMs-based SiN cantilevers. Results are presented for various deposition variables, including film thickness, temperature, deposition energy, and material. Scanning white light interferometry (SWLI) and scanning electron microscopy (SEM) were used to characterize film thickness. In addition to the experimental effort, an analysis was performed to predict the performance of a thermoelectric module fabricated with the superlattice films deposited on ceramic substrates. Thermal efficiencies approaching 15% are predicted for modest cold and hot side temperatures. Thermal conduction through the substrate was found to be the largest factor limiting the performance of the modeled thermoelectric modules.
机译:提出了通过离子束溅射沉积方法形成的热电材料,特别是二维量子阱限制结构的实验结果。这些热电设备的应用几乎包括产生热量(包括废热)的任何系统。这项研究的目标应用包括从独立的发电机系统和汽车中收集废热。基于纳米级,薄膜,超晶格的面内取向的热电发电机模块已显示出非常高的性能,适用于各种废热回收应用。在该项目中,开发了第一个快速的基于离子束的沉积工艺,用于生产Si / SiC(n型)和B4C / B 9C(p型)超晶格。沉积工艺使用低成本的粉末靶材,带有嵌入式加热器的简化基板支架,QCM沉积速率监控器以及步进电机控制的掩模。单个层的沉积时间显示比基于磁控管的系统中的沉积时间短得多。作为处理速度的一个示例,可以在短短20秒内沉积10纳米厚的Si层,而在不到100秒内沉积SiC层。报告了沉积膜的电阻率,热导率和塞贝克系数,以及它们各自的无量纲品质因数(zT)。在约600 K的适度温度下观察到的品质因数(zT)接近20。这些测量是在平面内进行的,在文献中还报道了提高的塞贝克值和降低的电阻率。描述了一种直接测量超晶格平面中的导热率的方法,该方法使用了基于MEMs的SiN悬臂梁。给出了各种沉积变量的结果,包括膜厚度,温度,沉积能量和材料。扫描白光干涉法(SWLI)和扫描电子显微镜(SEM)用于表征膜厚。除了实验工作外,还进行了分析以预测将超晶格薄膜沉积在陶瓷基板上制成的热电模块的性能。对于适中的冷端和热端温度,预计热效率将接近15%。发现通过基板的热传导是限制建模的热电模块的性能的最大因素。

著录项

  • 作者

    Jurgensmeyer, Austin Lee.;

  • 作者单位

    Colorado State University.;

  • 授予单位 Colorado State University.;
  • 学科 Engineering Mechanical.;Energy.;Physics Fluid and Plasma.
  • 学位 M.S.
  • 年度 2011
  • 页码 59 p.
  • 总页数 59
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号