...
首页> 外文期刊>Bulletin of the American Physical Society >APS -APS March Meeting 2017 - Event - Computational Design of Novel Compounds and Room-temperature Superconductors at High Pressure Conditions
【24h】

APS -APS March Meeting 2017 - Event - Computational Design of Novel Compounds and Room-temperature Superconductors at High Pressure Conditions

机译:APS -APS 2017年3月会议-活动-高压条件下新型化合物和室温超导体的计算设计

获取原文

摘要

Pressure, which is a fundamental thermodynamic control on materials' properties, reduces inter-atomic distances and profoundly modifies electronic orbitals and bonding patterns. High pressure has been a versatile tool for creating exotic materials that are not accessible at ambient conditions. Recently, crystal structure prediction has played a leading role in major high-pressure discoveries. Among various structure prediction methods, CALYPSO method [1] (underline {http://www.calypso.cn}) is developed on top of swarm-intelligence algorithms by taking the advantage of swarm structures smart learning. Application of CALYPSO into prediction of high-pressure structures has generated a number of exciting discoveries. Examples point to the predicted chemical reactions of Fe/Ni-Xe and Au-Li at high pressures with the formation of unusual compounds Fe$_{mathrm{3}}$/Ni$_{mathrm{3}}$Xe and AuLi$_{mathrm{4}}$/Li$_{mathrm{5}}$, respectively [2-3]. Motivated by our theory, the Fe$_{mathrm{3}}$/Ni$_{mathrm{3}}$Xe compounds were recently experimentally synthesized, providing a possible solution on ``missing Xe paradox'' towards to Xe storage inside Earth core. Here, Au loses its chemical identity, and acts as a 6p element by achieving high negative oxidation state ($ge $-2).Our prediction of high-T$_{mathrm{c}}$ superconductivity on highly compressed H$_{mathrm{2}}$S [4] initiated the recent experimental observation of record high 200 K superconductivity in H$_{mathrm{3}}$S. Perspective towards to the design of room-T superconductors in compressed H-rich materials will be presented, including design of high $T_{mathrm{chinspace }}$(extgreater 100 K) superconductor of TeH$_{mathrm{4}}$, the highest H-content superconductor in chalcogen hydrides [5].References:[1] Y. Wang, J. Lv, L.Zhu, and Y. Ma, Phys. Rev. B 82, 094116 (2010); Comput. Phys. Commun. 183, 2063 (2012).[2] L. Zhu, et al, Nature Chem. 6, 644 (2014).[3]G. Yang, extit{et al.}, J. Am. Chem. Soc. 138, 4046 (2016). [4] Y. Li, et al, J. Chem. Phys. 140, 174712 (2014).[5] X. Zhong, extit{et al,} Phys. Rev. Lett. 116, 057002 (2016).
机译:压力是对材料性能的基本热力学控制,它减小了原子间的距离,并深刻地改变了电子轨道和键合图案。高压已成为一种通用工具,可用于创建在环境条件下无法访问的奇特材料。最近,晶体结构预测在主要的高压发现中起了主导作用。在各种结构预测方法中,利用群体结构智能学习的优势,在群体智能算法的基础上开发了CALYPSO方法[1](下划线{http://www.calypso.cn})。 CALYPSO在高压结构预测中的应用产生了许多令人兴奋的发现。实例指出,Fe / Ni-Xe和Au-Li在高压下会发生预测的化学反应,并形成不寻常的化合物Fe $ _ {mathrm {3}} $ / Ni $ _ {mathrm {3}} $ Xe和AuLi $ _ {mathrm {4}} $ / Li $ _ {mathrm {5}} $$ [2-3]。根据我们的理论,最近通过实验合成了Fe $ _ {mathrm {3}} $ / Ni $ _ {mathrm {3}} $ Xe化合物,为Xe储存的``缺失Xe悖论''提供了可能的解决方案地球核心内部。在这里,Au失去了化学特性,并通过实现高负氧化态($ ge $ -2)充当6p元素。我们对高压缩H $ _的高T $ _ {mathrm {c}} $超导性的预测{mathrm {2}} $ S [4]发起了最近的实验观察,记录了H $ _ {mathrm {3}} $ S中创纪录的200 K超导性。将介绍对压缩的富含H的材料中的室温T超导体设计的观点,包括TeH $ _ {mathrm {4}} $的高$ T_ {mathrm {chinspace}} $(extgreater 100 K)超导体的设计。 ,是硫属元素氢化物中H含量最高的超导体[5]。参考文献:[1] Wang。Wang,J. Lv,L.Zhu,and Y. Ma,Phys。 B 82,094116(2010);计算物理社区183,2063(2012)。[2] L.Zhu等,自然化学。 6,644(2014)。[3] G。杨(Exet。),J。Am。化学Soc。 138,4046(2016)。 [4] Y. Li等人,《化学杂志》(J. Chem。)物理140,174712(2014)。[5] X. Zhong,现成的{et al}物理学。莱特牧师116,057002(2016)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号