...
首页> 外文期刊>Bulletin of the American Physical Society >APS -70th Annual Meeting of the APS Division of Fluid Dynamics- Event - The drag and lift of different non-spherical particles from low to high Re
【24h】

APS -70th Annual Meeting of the APS Division of Fluid Dynamics- Event - The drag and lift of different non-spherical particles from low to high Re

机译:APS-APS流体动力学分部第70届年会-活动-不同非球形颗粒从低到高的阻力和升力

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The present work investigates a simplified drag and lift model that can be used for different non-spherical particles. The flow around different non-spherical particles is studied using a multi-relaxation-time lattice Boltzmann method. We compute the mean drag coefficient $C_{D,phi}$ at different incident angles $phi$ for a wide range of Reynolds numbers ($Re$). We show that the sine-squared drag law $C_{D,phi} = C_{D,phi=0^{circ}}+(C_{D,phi=90^{circ}}-C_{D,phi=0^{circ}})sin^2phi$ holds up to large Reynolds numbers $Re=2000$. The sine-squared dependence of $C_D$ occurs at Stokes flow (very low $Re$) due to linearity of the flow fields. We explore the physical origin behind the sine-squared law at high $Re$, and reveal that surprisingly, this does not occur due to linearity of flow fields. Instead, it occurs due to an interesting pattern of pressure distribution contributing to the drag, at higher $Re$, for different incident angles. Similarly, we find that the equivalent theoretical equation of lift coefficient $C_L$ can provide a decent approximation, even at high $Re$, for elongated particles. Such a drag and lift law valid at high $Re$ is very much useful for Euler-Lagrangian fluidization simulations of the non-spherical particles.
机译:本工作研究了简化的阻力和升力模型,该模型可用于不同的非球形粒子。使用多重弛豫时间晶格玻尔兹曼方法研究了不同非球形粒子周围的流动。我们针对各种雷诺数($ Re $)计算了在不同入射角$ phi $处的平均阻力系数$ C_ {D,phi} $。我们显示正弦平方阻力定律$ C_ {D,phi} = C_ {D,phi = 0 ^ {circ}} +(C_ {D,phi = 90 ^ {circ}}-C_ {D,phi = 0 ^ {circ}})sin ^ 2phi $可容纳大雷诺数$ Re = 2000 $。由于流场的线性,在斯托克斯流量(非常低的$ Re $)处出现$ C_D $的正弦平方依赖性。我们探索了在高$ Re $时正弦平方定律背后的物理原点,并且令人惊讶地发现,由于流场的线性,这种情况不会发生。相反,它的出现是由于在不同的入射角度下,在较高的$ Re $下,压力分布引起阻力的有趣模式。同样,我们发现升力系数$ C_L $的等效理论方程甚至可以为细长粒子提供不错的近似值,即使在$ Re $高的情况下也是如此。在高$ Re $时有效的这种阻力和升力定律对于非球形粒子的Euler-Lagrangian流化模拟非常有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号